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Abstract 

Machine-Augmented Composites Materials (MACterials) are composites that contain 
many, small, embedded simple machines.  Due to the presence of these embedded 
machines, these composites have properties that cannot be obtained by other means.  
During this program, we have developed a comprehensive understanding of machine-
augmented composite materials to learn how they can be used in infrastructure 
applications.  Manufacturing methods were developed to embed machines of various 
sizes in a matrix material.  Experiments with embedded Z-shaped machines showed 
how the material converts compressive displacements into shear displacements with 
an efficiency ranging from 0.5/1 to 2/1, depending on the geometry of the machines.  
Experiments were conducted measuring the force conversion efficiency with much 
the same results.  This material may have applications in cable stays and in pre-
stressing composites in retrofit situations.  

We also developed both analytical and finite-element models to allow us to design 
materials with custom properties using embedded machines.  These models were 
validated with experimental tests.  Using the validated models, we designed machines 
that contained a viscous fluid for use in a material that could be used as a vibration 
damper.  The results also predicted that there would be an optimum viscosity for 
obtaining efficient damping.  Experiments were performed to verify this finding.  In 
addition, we optimized the design of the fluid-filled machine using an hourglass 
shape.  Calculations show that this shape is much more efficient at moving fluids 
under small displacements.  Samples of a material that could be used to damp 
vibrations during earthquakes were successfully tested. 

The goals of this task -- developing the analytical tools and manufacturing methods 
for using machine-augmented composite materials in infrastructure applications -- 
have been successfully achieved. 

 iv



Acknowledgments 

The authors would like to acknowledge the support of the following individuals: 

- Li-Hong Sheng (Caltrans) for program guidance throughout this effort 

- Paul C. Lu for his assistance and thoughts in lab experiments 

- Kenneth J. Park for his assistance in the document editing process 

- Dhruv N. Patel for his support to our mechanical loading experiments 

- Ching-Yao (Tony) Tang for his research on the fluid-filled damping 
efforts 

- James T. Yamasaki for his ability to fabricate the instruments required to 
test our innovative materials 

 v



Contents 

1.   Introduction ..........................................................................................................................  1 

2.   MACterial Development ......................................................................................................  3 

3.   Testing and Analysis of Z-Machines ....................................................................................  5 

4.   Developing  Design Tools ....................................................................................................  8 

 4.1 Finite-Element Analysis .............................................................................................  9 

 4.2 Theory of Beam on Elastic Foundation ......................................................................  10 

5. Machine Augmented Composites For Fluid-Filled Damping ..............................................  12 

 5.1 Z-shaped Machines For Fluid-Filled Damping...........................................................  13 

 5.2 Hourglass-Shaped Fluid-Filled Dampers....................................................................  14 

6.   Application of Force Conversion..........................................................................................  17 

7.   Summary...............................................................................................................................  19 

Appendix A—The Fabrication and Mechanical Behavior of Z-Shaped  
                        Machine-Augmented Composites ..........................................................................  21 

Appendix B—The Load-Load Characteristics of Z-Shaped Machines..........................................  33 

Appendix C—Theoretical and Finite Element Modeling of the Z-MACs .....................................  51 

Appendix D—Damping Capabilities of Fluid-Filled Machine-Augmented Composites ..............  73 

Appendix E—Potential Infrastructure Applications of Machine Augmented Composites ............  91 

 

Figures 

 1.  Schematic of simple stress-conversion machine. .................................................................  3 

  2. Scanning electron micrograph of  the prototype simple Z- machine....................................  3 

  4.  Composite containing graphite fibers and one ply of machines. ..........................................  3 

 vi



  5.  15-mm Z-machines produced through rapid prototyping (left) and 1-mm Z-machines  
produced by extrusion (right). ..............................................................................................  4 

  6. Experimental set-up used to measure shear displacement as a function  
of compressive force and displacement. ...............................................................................  5 

  7. The effect of inclination angle on the compressive-to-shear displacement behavior  
of a MAC (15-mm Z-machines). ..........................................................................................  6 

  8. Typical plot for a compressive displacement to lateral displacement experiment  
using a 15-mm Z-type machine for machines with matrix and machines without matrix....  6 

  9.   Experimental setup used to measure lateral forces as a function of shear load. ...................  7 

  10.  Stress conversion behavior of an unreinforced polyurethane resin versus a machine  
augmented prototype composite utilizing the same polyurethane material as the matrix. ...  7 

  11.  Undeformed mesh of the physical model developed using TrueGrid. .................................  9 

  12. Undeformed state of the experimental specimen (Figure 12a)  
and the finite-element model undeformed mesh (Figure 12b)..............................................  9 

  13.  Experimental and FEA compressive versus shear displacements for MACs  
with polyurethane matrix material and 15-mm cross-section machines  
for various machine inclination angles .................................................................................  10 

  14. Physical problem modeled as a beam-on-elastic foundation................................................  11 

  15. Experimental, FEA and beam-on-elastic-foundation solution of the deformed state  
of the sidewall of a 15-mm cross-section four-machine MAC  
with matrix material and a 60° inclination angle..................................................................  11 

  16.   Damping capability of various Z-machines. ........................................................................  14 

  17. Fluid-filled damping machine...............................................................................................  14 

  18.  Finite-element grid of hourglass-machines with the analytical expression for fluids. .........  15 

  19. MACterial application for the prestressing of composite strips for the strengthening  
of concrete structures............................................................................................................  17 

 

 

 

 vii



1.  Introduction 

Machine Augmented Composite Materials (MACterials) are based on the concept that unique mate-
rial properties can be obtained through making a composite material by embedding many small sim-
ple machines within a matrix.  A traditional carbon-fiber composite material is composed of fibers 
embedded in a matrix material.  The embedded fibers are stiff and strong.  Consequently, the com-
posite material is also stiff and strong.  In MACterials, many small simple machines are buried in a 
matrix material.  These small simple machines modify the forces applied to them.  Consequently, the 
MACterial composite (with embedded small simple machines) modifies the forces applied to it.   

In this task, we have developed the technology to embed many small “viscous dampers” in a matrix 
material.  The dampers absorb much of the strain energy induced in the MACterial.  When the 
MACterial is used in a bridge, it would potentially absorb a portion of the energy imparted on the 
structure by an earthquake, thereby reducing the probability of bridge collapse. 

Developing this new material requires an understanding of the physics that controls the response of 
the material to external forces.  After an understanding of the physics of the material has been estab-
lished, a set of basic equations and computer analysis design tools must then be determined to design 
the material for this particular damping application.  With this knowledge, we would be able to opti-
mize the geometry of the machines embedded within the material in order to increase the effective-
ness of the MACterial as a damping material.   

The following sections describe how we uncovered the physics of and design tools for the damping 
material of interest to Caltrans.  We began by manufacturing samples containing many small Z-
shaped machines.  We then measured the tensile stress/strain to shear stress/strain conversion proper-
ties of these samples.  With this experimental data, knowledge of the behavior of a beam on an elastic 
foundation, and the development of a finite-element analysis model of our machines, we were able to 
develop tools that have allowed us to optimize the design of our MACterials to fit required needs of 
various applications, foremost of which has been in creating a damping material.  The most advanced 
design consists of embedded hourglass-shaped machines filled with fluids to improve damping.  
Theoretical calculations have shown that this hourglass shape is much more efficient at moving fluids 
under small displacements, where the movement of fluids has been correlated with a high level of 
damping. 

Appendices A through E have been included in this report, providing a more detailed description of 
the MACterials being developed for fluid-filled damping. 
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2.  MACterial Development  
(Detailed Discussion in Appendix A) 

We needed to first uncover the basic concepts governing the MACterial containing many simple 
machines before we attempted to understand the MACterial containing the relatively complicated vis-
cous dampers.  We started with the machine shown in Figure 1.  This machine is essentially a four-
bar linkage that uses compliant hinges.  As shown in the figure, when compressive forces are applied 
to the top and bottom, the angled sidewalls cause the machine to distort in shear.  Conversely, when 
shear stresses are imposed on this machine, the sidewalls distort, forcing the upper and lower faces 
apart.  In this way, this “Z-machine” converts tensile forces into shear forces and vice versa. 

We made this “Z” profile into a small machine as shown in Figure 2.  A number of these machines 
were laid down side by side to form a ply, and these plies were stacked on top of each other.  The 
stack was infiltrated with a polyurethane resin to form the composite. The completed MACterial is 
shown in Figure 3. The processing steps used to incorporate these Z-machine segments into a com-
posite were patterned after current composite practices.  As a result, the production of these MACteri-
als can be easily incorporated into standard composite manufacturing techniques.  In this way, the 
costs of producing MACterials should be similar to the costs of producing traditional composites.  In 
addition, if the end item needs to be stiffer or stronger, plies of fibers can be added during production 
of the composite.  Figure 4 shows a composite that contains graphite fibers as well as a ply of 
machines. 

 
 
 
 
 
 
 
 
 

Figure 1.  Schematic of simple stress-conversion 
machine. 

 
Figure 2. Scanning electron micrograph of  the 

prototype simple Z- machine. 

Compression Forces 

Result in  
Shear DisplacementWall 

Inclination  
Angle 

 

 
Figure 3. Optical micrograph of three 

plies of stress-conversion 
MACterial. 

 
Figure 4.  Composite containing graphite fibers and one ply 

of machines. 
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The two methods developed for producing Z-machines are through extrusion and through rapid pro-
totyping.  The extruded machines are approximately 1-mm in cross-section and can be extruded out 
of a number of different material systems.  The size of these machines can be varied, depending on 
the desired application.  However, we found that the quickest and least expensive way to make 
machines for the study was through rapid prototyping, by which we drew a schematic of the machine 
using a 3-D CAD program and produced the machine using a 3-D printer (stereolithography 
machine).  This yielded a full-size plastic part with a 15-mm cross-section, suitable for experimenta-
tion.  The parts were not very strong, but were adequate to experimentally test the low strain proper-
ties of the material and validate the analysis.  Figure 5 shows an image of a Z-machine produced 
through rapid prototyping compared to one produced by extrusion.  A full discussion of the manu-
facturing process is given in Appendix A.   

 
Figure 5.  15-mm Z-machines produced through rapid prototyping 

(left) and 1-mm Z-machines produced by extrusion (right). 
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3.  Testing and Analysis of Z-Machines
(Detailed Discussion in Appendices A & B)

The first series of experiments we performed on the MACterial examined the MACterial’s shear dis-
placement characteristics when subjected to compressive displacement.  An example of these experi-
ments is shown in Figure 6 and is described in greater detail in Machine-Augmented Composites by
G. Hawkins, et al. AIAA 2002-1240.  In this particular test using the 1-mm extruded machines, two
10-ply samples were stacked on top of each other and placed in a mechanical testing machine.  An
aluminum “L” shaped plate was placed between the samples.  The samples were arranged such that
when compressed, they both moved the plate in the same direction.  The movement of the plate was
detected by an LVDT and recorded.

Using the same testing method on the 15-mm rapid prototype machines (using two 1-ply samples),
we measured the compressive displacement and compared it to the shear displacement of the MACte-
rial.  Figure 7 shows the results of one of these mechanical experiments.  As can be seen from the fig-
ure, in these samples, the shear displacement can be larger or smaller than the compressive displace-
ment depending on the angle of the walls.  The geometry of the machines controls their response. An
interesting difference between MACterials and typical composites is shown in Figure 8.  When the
fiber matrix ratio is changed in a typical composite, the material properties vary as a function of the
ratio between the amount of fiber to the amount of matrix material.  This is called the “rule of mix-
tures.”  In Figure 8, displacement-displacement data is shown from two samples.  One of the samples
contains approximately 50% machines and 50% matrix.  The other sample contains 100% machines
and 0% matrix.  The data for the two samples lies on top of each other.  This shows that this property
in MACterials does not follow the rules of mixtures but is dependent on the geometry of the embed-
ded machines.  This test is described in greater detail in Machine-Augmented Composites by G.
Hawkins, et al. AIAA 2002-1240.

LVDT

Aluminum “L” plate

Platen

Platen

MACterial
Samples

MACterial
Samples

Figure 6. Experimental set-up used to measure shear displacement as a
function of compressive force and displacement.

Aluminum L Plate
MACterial
Samples

MACterial
Samples



 
 

0.0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
Compressive Displacement (mm) 

1.8 2.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

0.0 

45 deg. machines 
60 deg. machines 
75 deg. machines 

 
 

La
te

ra
l D

is
pl

ac
em

en
t (

m
m

) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The effect of wall inclination angle on the compressive-to-shear 
displacement behavior of a MAC (15-mm Z-machines). 
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Figure 8. Typical plot for a compressive displacement to lateral 
displacement experiment using a 15-mm Z-type machine for 
machines with matrix and machines without matrix. 

 
Up until this point, we have discussed the displacement characteristics of MACterials.  In addition, 
machines are also able to convert forces.  The second series of experiments we performed on the 
MACterials examined the MACterial’s force conversion characteristics when subjected to compres-
sive forces.  To test the force conversion properties of this material, we developed the “load-load” 
testing device shown in Figure 9.  A full discussion of the load-load testing is given in Appendix B.  
The test is similar to a double-lap shear test.  The device was mounted in a universal testing (UTS) 
machine that pulled from the top and bottom.  The top two arms were mounted such that they are 
capable of swinging laterally like a pendulum.  As shown in the figure, a load cell detected any forces 
that were forcing the two arms laterally.  Two samples were mounted at the bottom of the device such 
that they were loaded in shear when the UTS machine pulled in tension.  These MACterial samples 
converted shear forces into lateral compressive forces.  These lateral compressive forces then 
attempted to push the arms apart.  The lateral forces were measured with the load cell. 
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Figure 9.  Experimental setup used to measure lateral forces as a function of shear load. 
 
 
 
Figure 10 shows the data taken with this load-load device.  Data from a sample made from the 
polyurethane matrix material alone shows that traditional materials without Z-machines do not 
convert shear forces into compressive forces.  The data for the MACterial shows how it converts the 
forces in approximately a one-to-one ratio.  This ability to convert an applied force to a lateral force is 
a function of the geometry of the machines and can be varied by the material designer. 
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4.  Developing  Design Tools  
(Detailed Discussion in Appendix C) 

As mentioned at the beginning of this section, in order to design MACterials, we needed to develop 
design tools.   Two types of tools have been developed during this program:  a Finite-Element 
Analysis (FEA) and the use of the Theory of a Beam on an Elastic Foundation.  First, we will discuss 
the finite-element analysis tool (for a full discussion see Appendix C).   

4.1 Finite-Element Analysis 
A commercial finite-element code, ABAQUS, was used during this program.  The code was fully 
nonlinear, and the large deformation strain formulation allowed the nonlinear response present in the 
MACterials.  The grid was developed using a commercial program, TrueGrid, and is shown in Figure 11. 

Figure 12 shows a comparison of the shape of the machines under compressive forces as predicted by 
the FEA model and as observed in experimentation.  Depicted are the Z-machines during and after the  

 
Figure 11.  Undeformed mesh of the physical model developed using 

TrueGrid. 
 

 
 (a) (b) 

 
 (c) (d) 

Figure 12. Undeformed state of the experimental specimen (Figure 12a) and the 
finite-element model undeformed mesh (Figure 12b).  Deformed state of 
the experimental specimen  (Figure 12c) and the deformed finite-element 
model mesh at 10% vertical strain (Figure 12d). 
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application of compressive forces, as well as the theoretical outputs from a finite-element analysis of 
the experiment.  The two figures compare quite well, demonstrating the qualitative similarity of our 
Finite-Element Analysis. 

Figure 13 shows experimental and finite-element results of a study of the displacement-displacement 
response of machines with varying wall inclination angle.  This data validates our theoretical work 
with what we have observed experimentally. 

4.2 Theory of Beam on Elastic Foundation  
An analytical design tool was developed based on the theory of a beam on an elastic foundation 
model.  As shown in Figure 14, the sidewall is supported by the compliant matrix material.  This is 
similar to a beam on an elastic foundation, which is a classic civil engineering problem solved in the 
19th century.  The equation and its solutions for this case are discussed in detail in Appendix C. 

Figure 15 shows the experimental, FEA, and beam-on-elastic-foundation deformation response of a 
MACterial (rapid prototype, 60° inclination angle) placed under compressive load.  The theoretical 
deformation pattern obtained from the theory of beam on elastic foundation captures very closely the 
actual deformation pattern obtained from the experiments and is in very close agreement with the 
FEA results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Experimental and FEA compressive versus shear displacements for 
MACs with polyurethane matrix material and 15-mm cross-section 
machines for various wall inclination angles.  The experimental 
results are from machines with a 60° inclination angle, and the 
FEA solutions are for machines with 50°, 60°, and 70° inclination 
angles. 
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Figure 14. Physical problem modeled as a beam-on-elastic foundation.  The 
sidewall (beam) is supported by the compliant matrix material 
(foundation).  The applied force (F) on the material consists of 2 
components perpendicular (P) and parallel (N) to the sidewall.  
Any internal pressure inside the machines is represented by a 
distributed load (Q).  Figure 14b is a model of the undeformed 
beam on foundation.  Figure 14c is a model of the deformed beam 
on foundation. 
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5.  Machine Augmented Composites For Fluid-Filled Damping  
(Detailed Discussion in Appendix D) 

The main purpose for embedding fluid-filled machines in a matrix is to dissipate the energy of vibra-
tions.  Any compression of the fluid-filled Z-shaped machines causes the top and bottom layers of the 
machines to collapse closer to each other.  This motion decreases the internal area, which causes the 
fluid inside the machine cells to flow.  The greater the dissipation rate (i.e., the greater the fraction of 
fluid being displaced), the better the material is for damping.  We began our tests using Z-shaped 
machines, which was our initial design.  After developing design tools that were used to optimize the 
shape of our machines, we reached the conclusion that an hourglass-shaped machine would be the 
most effective shape for damping.     

5.1 Z-shaped Machines For Fluid-Filled Damping 
Various measurements of tan delta (tan δ) were taken that allowed us to capture damping capabilities 
and characterize damping behavior of the Z-machines.  Dynamic Mechanical Analyses were done 
using EnduraTEC ELectroForce ELF 3200 material testing system to determine the tan δ values as 
functions of frequency of the Z-machines.   

We tested samples that included the following:  machines without matrix, machines with matrix, 
machines with matrix filled with water, machines with matrix filled with 13,000-centipoise silicone 
oil, and machines with matrix filled with 30,000-centipoise silicone oil.  

Prior to the test, we specified the dimensions of our specimen and configured the settings inside the 
DMA control software.  We ran 10 conditions, which ranged from 1 Hz to 100 Hz.  The dimensions 
of the specimens were approximately 40 mm in length, 25 mm in width, and 1.5 mm in thickness.  
Using Fast-Fourier Transform analysis, the DMA software determined the fundamental frequency of 
data collected for each test condition and calculated the viscoelastic properties of the specimen.  The 
analysis software calculates the tan δ, which is a measure of the damping of the material.   

Figure 16 shows the curve of tan δ vs. frequency for various cases of Z-machines and compares them 
with the tan δ of pure polyurethane rubber, which is the material used as matrix inside the machines. 
As seen by the low tan δ values, Z-machines alone provide little damping.  However, with rubber 
matrix impregnated between the machines, tan δ value increases significantly, and the machines, 
especially fluid-filled ones, become fairly good dampers. 

One of the most intriguing characteristics we have discovered from the DMA testing of Z-machines is 
that lower viscosity fluids provide higher damping capabilities.  This is counterintuitive, especially 
when most theoretical descriptions suggest otherwise.  The data indicates that embedding water-filled 
machines inside materials can significantly increase energy dissipation.  As seen in the data, damping 
decreases as frequency increases.   
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Figure 16.   Measurements of the damping as a function of the frequency. 

 

5.2 Hourglass-Shaped Fluid-Filled Dampers 
With this understanding of how machines behave when embedded in a matrix material, we were able 
to design and test a fluid-filled damping machine.  A cross section of the machine is shown in Figure 
17.  When this machine is put into compression, the walls buckle towards each other and reduce the 
enclosed area.  The pressure increased in a fluid contained in that enclosed area.  In an extruded 
machine made with this cross section, the pressure increase will cause the fluid to flow to a lower 
pressure area.  In our design, we intentionally put bubbles in the fluid to provide a region for the fluid 
to flow.  
 

Compressive Force Input 
 

Resulting 
Forces 

Internal Volume Changes Due to Compressive Force

 
 
 
 
 
 
 
 
 

Figure 17. Fluid-filled damping machine.  When put into compression, the 
walls buckle towards each other and reduce the enclosed area. 
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This fluid-filled machine design was modeled using the finite-element model for the solid portion and 
an analytical expression for the fluid.  The finite-element grid and the analytical expression are shown 
in Figure 18 (more details are given in Appendix D).   

As shown in Figure 16, the highest damping obtained in this study was tan delta = 0.55, which corre-
sponds to 43% energy dissipation per cycle.  This is significantly larger than the energy dissipation of 
35% obtained from materials in use today.  By optimizing the shape of the machines and the viscosity 
of the fluid, we anticipate that even higher energy dissipation values can be obtained in fluid-filled 
dampers. 
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Figure 18.   Finite-element grid of hourglass-
expression for fluids. 
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6.  Application of Force Conversion (Appendix E) 

Although we originally studied the Z-machines as a means to understand MACterial behavior, we 
found a use for this material in infrastructure applications.  Traditional composites have been used in 
recent years to reinforce concrete structures.  It has been shown that a stronger concrete structure 
results if the reinforcing composite is prestressed during its application.  To date, it remains a compli-
cated procedure to prestress the composite strips as the adhesive cures in most applications outside of 
the laboratory.  MACterials allow an easy way to prestress composites.  As shown schematically in 
Figure 19, as a composite strip is being adhesively bonded to a concrete beam, anchor plates are 
placed at either end.  The MACterial is located between the composite and the anchor plates, which 
forces the MACterial into compression as the anchor bolts are tightened.  As desired, the stress con-
version effect causes the composite to be prestressed as the adhesive cures.  A full discussion of this 
concept is given in Appendix E. 

 
 

Anchor Plate 

Adhesive 
(Drawing not to scale) 

Machine Layer 
(Patent Pending) 

Composite Strip Anchor Plate 

Anchor Bolts 

 Concrete Beam
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. MACterial application for the prestressing of composite strips for 
the strengthening of concrete structures.  The composite strip is 
stressed in tension when the anchor bolts are tightened.  Both the 
bolts and adhesive hold the composite strip in a prestressed state. 
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7.  Summary 

During the course of this task, we have developed a basic understanding of how Machine Augmented 
Composite Materials can be used in infrastructure applications.  We began by manufacturing samples 
containing many small Z-shaped machines that convert tensile stresses/strains into shear 
stresses/strains.  Experiments with these samples showed how Machine Augmented Composites con-
vert compressive displacements into shear displacements with an efficiency from 0.5:1 to 2:1, 
depending on the geometry of the machines.  Experiments were also conducted measuring the MAC-
terial’s force conversion efficiency with much the same results.  An interesting observation was made 
concerning the “rule of mixtures,” which is well established in the composites industry.   In MACteri-
als, the rule of mixtures does not apply when considering these stress conversion effects. 

The next task involved developing tools that allowed us to design into these MACterials custom-
tailored properties, which came from altering the internal geometry, size, and material consistency of 
the internalized machines.  First, we developed an analytical solution for the shape of the machines by 
comparing the machine’s walls to a beam on an elastic foundation.  The solutions to the beam on 
elastic foundation problem have been long established and the solutions have fit our experimental 
values quite well.  We also developed a finite-element analysis model of our machines, allowing us to 
predict the response of our machines with complicated designs.  These results have also compared 
very well with our observed experimental values. 

Using the knowledge and tools developed earlier, we designed and experimented with machines that 
contained a viscous fluid for use as vibration dampers.  We started by injecting fluids of differing vis-
cosities into our Z-machines and measuring the resulting damping properties.  Our theoretical models 
predicted that there would be an optimum viscosity for obtaining efficient damping.  Our experiments 
showed that as we decreased the viscosity, the damping increased.  We have not yet obtained the 
optimal value.   

In addition to our work with various fluids, we have also performed work optimizing the design of the 
fluid-filled machine, which has resulted in an hourglass-shaped machine.  Theoretical calculations 
show that this shape is much more efficient at moving fluids under small displacements, where the 
movement of fluids is correlated with a high level of damping.  Experiments on this design are being 
continued. 

As a side note, during the course of these studies, an issue arose concerning the prestressing of com-
posite reinforcements during their installation on bridges and other structures.  We showed both ana-
lytically and experimentally that quite high levels of prestress can be obtained by embedding Z-type 
machines in a composite bondline before application to a structure.     

In summary, we have developed the rules, tools, and manufacturing methods for Machine Augmented 
Composite Materials.  We have shown that they can be used in infrastructure applications to prestress 
composites in retrofit situations and can potentially be used to dampen the vibrational energy caused 
by earthquakes.  These were the goals of this task and they have been successfully achieved. 
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Appendix A—The Fabrication and Mechanical Behavior of Z-Shaped Machine-
Augmented Composites 
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Abstract 
 
 
Machine-augmented composites (MACs) are a new class of composite materials that utilize the 
tailored shape of their reinforcement to create novel properties best suited for an application. The 
particular geometries of the machines control the composite’s internal forces. These machines can be 
fabricated into numerous shapes and out of many material systems, thereby providing different 
mechanical responses.  
 
In this first part of two reports, we focus primarily on the manufacturing and testing of a new type of 
composite material that contains Z machines. These Z machines were designed to provide 
compression-to-shear stress conversion properties. In order to better understand the stress conversion 
response of Z machine MACs, we have measured the shear displacement and deformation behavior of 
these composites as a function of  compressive displacement. The effect of machine inclination angle, 
machine  renforcement volume, and machine size were also experimentally evaluated. Direct 
correlations between a prototype system and the extruded system MACs were verified. The data 
collected in this report were then used to develop an analytical framework to better predict machine 
behavior. The second report will describe the finite-element analysis model of Z machine MACs. A 
thorough understanding of both our experimental and analytical results will contribute in the design 
of future machine configurations. 
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A-1.  Introduction 

 
 

Machine-augmented composites (MAC) are a new class of composite materials that utilize the tai-
lored shape of embedded machines to create unique mechanical properties. Composite materials typi-
cally use cylindrical fiber reinforcements, such as carbon, glass, and polymeric fibers, aligned in pre-
ferred orientations in order to meet mechanical performance requirements. However, if these 
reinforcements are tailored into specific machine shapes, other properties can also be obtained from 
the same structural system leading to a dual-use system. The geometry of the machines can modify 
the composite’s internal forces, creating as many different mechanical properties as there are 
possibilities for the cross-sectional shapes of machines. Other researchers have experimented with 
different cross-sectional shapes for fiber reinforcements. However, the majority of this work has been 
focused on improving the fiber-matrix contact area in order to promote interfacial bonding. In 
contrast, in describing our MAC materials, we use the term “machine” to describe “an instrument 
(such as a lever) designed to modify the application of power, force, or motion” by virtue of its 
geometry. 
 
Figure A-1 shows a schematic of the cross section of a simple stress-conversion machine that converts 
shear forces into tensile/compressive forces and vice versa. This machine consists of two parallel 
(horizontal) plates connected through two struts (slanted walls) situated at an angle to the plates (Z-
type configuration). Note that if shear forces are applied to the machine as shown, the slanted walls 
change their angle, forcing the top and bottom plates to move apart. This movement causes compres-
sive forces on any adjacent contacting material. Conversely, if compressive forces are applied to the 
top and the bottom faces, the machine imposes shear forces on any abutting material. As indicated in 
the figure, this machine responds to shear forces with a tensile/compressive strain. 
 
 

 
Figure A-1. Schematic of Z-shaped machine.  (a) machine action;  

(b) tensile strain vs shear stress response. 
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We used this concept to develop a centimeter-scale prototype composite that we can use to experi-
mentally test and theoretically evaluate the stress-conversion properties attributed to this machine. 
Figure A-2a shows a photograph of this prototype Z machine. Figure A-2b shows the corresponding 
composite made with these machines. The white material represents the prototype machines, and the 
yellow material represents the matrix material. Each cell represents one machine as described in Fig-
ure A-1.  These prototype composites can be rapidly modified by changing the structural parameters 
of the machines, such as, wall thickness, aspect ratio, wall inclination angle, overall cross-sectional 
area, and cell unit volume. This allows for a rapid evaluation of proof of concept prior to the extrud-
ing of these machine-shaped reinforcements, allowing us to be more cost and time effective. 
 
In this report, we report primarily on the manufacturing techniques and the experiments performed on 
our Z-type stress conversion composites. Testing was performed on both our centimeter-scale proto-
type and millimeter-scale extruded machines. The effects of machine inclination angle, machine rein-
forcement volume, and machine size were experimentally evaluated to better understand the behavior 
of the system. In addition, the deformation behavior of the machines was experimentally evaluated as 
a function of load. These data were then compared with our analytical and finite-element micro-
mechanical models, which will be discussed in a future report. 
 
 

 

 
Figure 2.  Photograph of 3-, 4-, and 5-celled prototype machines (a) unfilled (b) polyurethane filled. Figure A-2.   Photograph of 3-, 4-, and 5-celled prototype machines (a) unfilled  (b) polyurethane filled. 
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A-2.   Experimental 
 
 

A-2.1     Fabrication of Prototype Z Machines 
All prototype Z machines were produced using a Konners 3D printer. The samples were designed 
using a Fastran design program and fabricated into the desired shapes. Samples consisting of 3, 4, and 
5-celled Z-shaped machines are shown in Figure A-2. Most samples tested had 60° inclination angles 
unless otherwise stated. The sample dimensions were approximately 45 mm x 50 mm x 10 mm. The 
cross-sectional dimensions of each Z-shaped machine was approximately 10 x 7 mm.  Additional 
prototype machines with inclination angles of 45° and 75° were also fabricated. 
 
 
A-2.2    Fabrication of Prototype Machine Augmented Composites (MAC) 
In order to evaluate the effect of these Z-shaped prototype machines on composite properties, a 
polyurethane material was infiltrated into the system as a matrix material between the Z-shaped 
machines. Smooth-On urethane compound PMC-121/30 (Resin A and Resin B “Dry” formulation) 
was used as the matrix material. This system was mixed in a 1:1 volume ratio and degassed under 
vacuum. The prototype machines were placed in Teflon molds and the polyurethane mixture was 
poured into the spaces between the machines. The open face of each of the volume cells was sealed in 
order to prevent infiltration into the machine’s hollow center. The infiltrated sample was allowed to 
cure for 24 h. Excess flash polyurethane resin was removed using a sharp blade. 
 
 
A-2.3     Fabrication of Nylon Extruded Z Machines 
The Z machines are approximately 1.0 mm in cross section and were extruded from nylon stock.  
Extrusioneering Inc., located in Temecula, CA extruded all of the 1-mm Z machines used in this 
study. These machines have been extruded out of a number of different material systems. The size of 
these machines can also be varied, depending on the desired application. Figure A-3 shows the cross 
section of one of these Z-shaped extruded machines. 
 

 
Figure A-3.    SEM of extruded nylon machine showing Z-type configuration. 
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A-2.4     Fabrication of Extruded Z-MAC 
The processing steps incorporating these Z-machine segments into a composite were patterned after 
current composite practices. The extruded Z-machine segments were laid down, side-by-side in a 
specially designed grooved Teflon mold, and adhesively bonded (3M Super 77 Spray Adhesive) to a 
polyester scrim cloth (see Figure A-4). This assembly represents one ply of machines. The ends of the 
machines were sealed with an adhesive (white glue). To produce a composite laminate, the single ply 
of machines was impregnated with a room-temperature-curing polyurethane resin matrix material 
(Smooth-On PMC-121/30) and placed in an evacuated bell jar to outgas the polyurethane as it 
polymerized and hardened. After the polyurethane cured, the sealed sample ends were trimmed off 
with sharp scissors so that the open machine ends were exposed (see Figure A-5). 
 
A-2.5     Tensile Tests of Constituent Materials 
In order to have accurate material constituent properties for our model, tensile testing was performed 
on (a) the prototype structure material, (b) the polyurethane matrix material, and (c) the nylon 
extruded machines. All testing was performed using a Universal Instron Testing Machine equipped 
with a data acquisition interface system. The displacement data were obtained from both the 
crosshead displacement and an extensometer. The loading rate was 0.005 in./min using a 200-lb load 
cell. 
 
 

 
Figure A-4. Extruded nylon machines aligned on a grooved Teflon mold and 

bonded to a scrim cloth. 
 

 Figure A-5.  Extruded nylon Z-machines aligned in a polyurethane resin matrix.  
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A-2.6     Compressive-Shear Displacement Mechanical Testing of Samples 
All compressive-shear displacement tests were performed using a Universal testing machine at a 
crosshead speed of 0.005 in./min. The test set-up is shown in Figure A-6. When a compressive force 
is applied, the MAC distorts in shear. Thus, when a MAC sample is placed in a typical mechanical 
testing machine, the surfaces of the testing machine constrict the MAC movement so it cannot 
displace in shear. To circumvent this problem, two MAC samples were placed on top of each other, 
with one sample’s orientation reversed with respect to the other. An aluminum plate was placed 
between the two MAC samples (see Figure A-6). 
 
In this arrangement, neither of the two samples subject the testing machine to shear forces. When the 
top sample pushes the aluminum plate that is between the samples to the right, the bottom sample also 
pushes the aluminum plate to the right. The shear displacement is determined by measuring the 
movement of the aluminum plate. The lateral motion is measured with an LVDT probe shown 
touching the aluminum plate at the right of the figure. Besides providing a convenient measuring 
surface, the plate cancels out any symmetrical forces caused by the Poisson effect. Both prototype 
machine composites and extruded machine composites were tested in the same manner. 
 

 

Figure A-6. Photograph showing test set-up for compression-to-shear 
displacement tests. 
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A-3. Results and Discussion 
 
 
As described earlier, our prototype Z-machine structures provide a means for us to rapidly collect 
experimental data to evaluate how the shape of our machines affect composite mechanical behavior. It 
also allows us to better fine tune our analytical model. Table A-1 shows the various types of prototype 
and extruded Z machines fabricated for this study. 
 
As shown, the first three samples are the Z machines alone with no matrix. The samples have either 3, 
4, or 5 machine cells per unit area in the structure. All of these samples have a wall inclination angle 
of 60°. The following three samples are the same machines with infiltrated polyurethane resin as the 
matrix material. The last three prototype samples were fabricated in order to determine the effect of 
wall inclination angle on machine mechanical behavior. The cell unit volume was kept constant at 4 
cells per unit area while the inclination angle was varied by 15° from 45° to 75°. These last three 
prototype samples were fabricated with larger (15 mm) machines than the previous prototype 
machines to mitigate delamination effects seen in some of the 10-mm-size prototype machines.  The 
final sample is a 15-cell extruded composite with 1-mm-size nylon Z-machines. Polyurethane was 
used as the matrix material. 
 
 
A-3.1     Deformation Characteristics 
Figure A-7 shows the deformation characteristic of an unfilled prototype machine sample subjected to 
a compressive load. Figure A-8 shows the deformation behavior of the same prototype machine filled 
with matrix material. As expected for both cases, by applying a compressive load, which causes a 
compressive displacement, the shape of the machine promotes a shear translation.   
 
In the case of no matrix material (Figure A-7), the machines behave as hinges. As the compressive 
load is applied, the machines hinge at their junction sites and move in a shear direction. Both the 
filled and unfilled systems behave similarly under small strains. 
 

Table A-1.  Prototype and Extruded Machines and Composites Fabricated for This Study 
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Figure A-7    Deformation characteristics of an unfilled 4-celled machine composite under load. 

 

 
Figure A-8.    Deformation characteristics of a filled 4-celled machine composite under load. 
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The machines appear to convert applied compressive loads to shear loads. However, at the higher 
strains, the polymer matrix applies a force on the cell walls due to the Poisson effect of the resin and 
distorts the shape of the cell walls (Figure A-8). The deformation shape of the walls of the filled 
systems follows more of an s-type deformation than the hinged lever behavior observed for the 
unfilled system.  The effect this has on the compressive-to-shear translation will be subsequently 
discussed. 
 
 
A-3.2     Effect of Machine Volume Ratio on MAC Displacement Behavior 
In standard fiber-reinforced polymers, the fiber volume ratio influences many of the mechanical 
properties of the material, such as the modulus, strength, thermal expansion, etc. Calculating these 
properties involves the well-known rule of mixtures that accounts for the volume ratio of the fibers to 
matrix material. To investigate this effect, samples with the same overall dimensions were 
manufactured containing different numbers of machines per unit volume. Samples containing three, 
four, and five 60° angle prototype machines were manufactured. The samples were then fabricated 
into composites using a polyurethane matrix. The results of the compression-to-shear displacement 
tests are shown in Figure A-9. 
 
As shown, the ratio of compression-to-shear translation (strain conversion ratio) is approximately one 
for all of the different cell machine volumes. Therefore, the material response is dominated by the 
geometry of the embedded machines and not the machine density. This would indicate that the rule of 
mixtures does not apply for MACs when considering the compressive-to-shear displacement ratio.  
Included in Figure A-9 is the data from a sample that had no matrix material. This sample was an 
unfilled prototype machine as previously shown in Figure A-7. 
 

 

Figure A-9. Shear vs. compressive displacement for rapid 
prototype machines as a function of machine 
volume percent (3-, 4-, and 5-celled machine 
composites). 
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Interestingly, these data follow the same curve as the matrix filled samples, which would indicate that 
compressive-to-shear displacement ratio is affected minimally by the matrix material. This indicates 
that the variation in the deformation behavior between filled and unfilled system is negligible with 
respect to displacement.  However, it should be noted that the load-to-displacement curve for these 
composites will still remain a function of the matrix material properties. 
 
 
A-3.3  Effect Due to Changes in Machine Inclination Angle 
The most direct effect on the compression/shear conversion ratio is the angle between the sidewalls 
and the base of the machines. In a four-bar linkage, an angle of 45° yields a one-to-one ratio of 
compression to shear, and the ratio goes to infinity as the angle increases to 90°. These Z machines do 
not convert compression to shear as efficiently as a four-bar linkage, but the data follow the same 
trend as the wall angle is changed. As shown in Figure A-10, for a given compressive strain, the shear 
displacement increases as the angle is increased (15-mm Z-shaped machines). 
 
 
A-3.4  Scaling Effects 
Single-ply composite samples were fabricated using 1-mm-sized extruded nylon Z-shaped machines 
with a 60° inclination angle. The samples were then tested to verify that the small extruded MACs 
behaved similarly to the two larger prototype samples. Figure 11 shows the shear versus compressive 
displacement for MACs with three different-sized machines. All of the samples contained machines 
with a 60° inclination angle. For small displacements, there is very good accordance between the two 
different-sized prototype samples and the extruded samples. The first thing to note is that the ratio of 
the shear-to-compressive displacement is approximately one to one. If the machine were a perfect 
four-bar linkage with hinges at the corners, simple geometry shows that the ratio would have been 
greater than one. The actual value is less than that because the machines act as a flexure, not as a 
hinge. 

 
Figure A-10.  The effect of inclination angle on the compressive-to-shear 

displacement behavior of a MAC (15-mm Z-machines). 
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A-4.  Conclusion 
 
 
We have designed, manufactured, tested, and analyzed a new type of composite material that contains 
simple machines that act to modify the forces within the material. Using a Z-shaped prototype 
machine configuration, we have verified that our new composite material upon compression loads 
converts applied compressive displacement to shear displacement. From our investigation we have 
made the following conclusions: 
 
1. As expected, under both small and large compressive loads, the machines translate the compressive 
displacement to shear displacement. 
 
2. The presence or lack of matrix material does not seem to influence the overall displacement 
response of the MACs. However, at a local level, for large displacements, the matrix material applies 
loading on the walls of the machines, distorting their shape. This distortion in the shape of the 
machine walls is not present in the MACs without matrix material. The distortion in the shape of the 
walls seems to be a local phenomenon that does not affect the overall displacement behavior of the 
MACs. 
 
3. The machine density has little influence on the displacement response of the MACs while 
undergoing small deformations. For large deformations and a fixed compressive deformation, the 
corresponding shear deformations of the MACs increase with increasing density. This effect is more 
significant in the case of the MACs with matrix material than in the case of MACs without matrix 
material. 
 
4. Changes in the machine inclination angle have a strong influence on the compressive shear 
displacement conversion ratio. For a given compressive strain, the shear displacement will increase as 
the inclination angle is increased. 
 
5. For small displacements, the machine size has little effect on the displacement response of the 
MACs, even with MACs that are made out of different constituent materials. For large displacements, 
the machine size also appears to have little effect of the displacement response of the MACS when 
considering different size MACs made with the same constituent materials. 
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Abstract 
 
 
Machine-augmented composite materials (MACterials) are composite materials that have tailored 
reinforcements that perform specific mechanical operations that are typically not available with other 
state-of–the-art systems.  MACterials consisting of unidirectional Z-shaped machines embedded 
within a polyurethane matrix were fabricated.  Larger (15-mm) Z-machines were fabricated through 
rapid prototyping, while small (1-mm) Z-machines were made of extruded nylon.  These two 
MACterial systems were tested using a unique test fixture that was developed in our laboratory to 
measure the stress conversion behavior of the samples.  This fixture allowed us to evaluate how the 
design and shape of the machines convert an applied load from one direction of the composite to 
another.  Most constrained materials, when subjected to a load, apply a small portion, if any, of this 
load in a secondary direction.  We have shown that MACterials can be designed to not only convert 
stress efficiently (1-to-1 ratio), but the stress conversion ratio can also be tailored depending on the 
lay-up of the MACterial.  The effect of machine cell size, cell volume, wall inclination angle, lateral 
preload, and previous load-cycle behavior on the resultant stress conversion behavior was 
investigated, both experimentally and through finite element analysis.  The results were also 
compared to traditional isotropic viscoelastic materials.   
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B-1.  Introduction 

Machine-augmented composite materials (MACterials) are composites that have tailored reinforce-
ments to perform specific mechanical operations that are typically not available with other state-of-
the-art systems.  Recently, there has been an increased desire by researchers in the industry to tailor a 
material’s properties to meet specific needs.  The efforts in this field generally have involved using 
“smart materials,” or the tailoring of the material’s microstructure.  The closest work from which we 
can gain insight into MACterial design and analysis is included in papers describing the analysis and 
construction of hierarchical composites.   Hierarchical composites are defined as materials that con-
tain structures of multiple-length scales with large but finite differences.  Examples of hierarchical 
composites range from the Eiffel tower to materials with nanometer-sized microstructures.  MACteri-
als fit into this definition because they contain many small machines that combine for use in a mate-
rial at a larger scale.  Some of the references describe large arrays of interconnected micromecha-
nisms that are studied both theoretically and, in some cases, experimentally.  Lakes1 gives a complete 
discussion of hierarchical composites.  The theoretical treatment of hierarchical composites can be 
used as a basis for the development of the design rules for the MACterials. 

Embedding simple machines in a matrix allows the material scientist to design a material with spe-
cific properties in mind.  A full description of the fabrication of MACterials can be found in Zaldi-
var.2  Depending on the shape and size of the machines, different resultant mechanical behaviors can 
be achieved.  For example, when “Z-shaped” machines are employed, the MACterial distorts in shear 
when compressed as shown in Figure B-1.  Converting compressive-to-shear load, and vice versa, is 
an ability that can be useful in applications where it is advantageous to change the size of a part when 
it is under an applied load.  Most constrained materials, when subjected to a load, apply only a small 
portion, if any, of this load in a secondary direction.  MACterials, however, can be designed to not 
only transfer the load efficiently, but the degree of the displacement and/or load can be tailored, 
depending on the lay-up of the MACterial.   

 

 
Figure B-1.  Schematic showing shear-to-compression stress 

conversion. 
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Hawkins3 has described the concept of Stress Conversion Ratio as the percent utilization that the 
machine or material possesses when transferring stress from one direction or mode to another.  For 
example, in the case of an isotropic viscoelastic material, an applied load is poorly transferred in the 
off-axis directions.  Most of the stress conversion behavior is a result of the Poisson effect.  In the 
case of MACterials, the machine shape can be optimized for the desired conversion behavior.  
Embedding Z-machines in a matrix allows the resulting composite to convert compressive to shear 
stresses, and vice-versa.  This stress conversion could be used in the design of fasteners or clamping 
devices, where the shear load imposed on the MACterial could cause the MACterials to expand and 
wedge more tightly in position.  In addition, seals or gaskets may be able to be made more effective if 
machines were incorporated into their design.  As another, we have been exploring using these 
machines in adhesive joints to reduce peel forces.   

We have designed and fabricated a unique test fixture in order to evaluate the stress conversion 
behavior of our composite systems.  When subjected to a shear load, the unconstrained Z-shaped 
machines will distort and change size.  When the material is constrained and the machines cannot 
change size, they will induce compressive or tensile loads on the constrained faces, depending on the 
direction of the shear load.  Unfortunately, there is no ASTM test for measuring this conversion from 
shear to compressive load.  Consequently, we have developed a unique experimental set-up (Figure 
B-2) to measure the compressive loads generated by a shear load.  By applying an axial shear load on 
our machines, the lateral load can be measured with a separate load cell.  This set up allows testing of 
numerous samples without many of the complexities typically associated with biaxial testing.  Greater 
detail on the test procedure will be discussed in our experimental section.  In this report, the effect of 
machine cell size, cell volume, wall inclination angle, lateral preload, and previous load-cycle 
behavior on the resultant stress conversion behavior was investigated.   

Finite-element analysis (FEA) of the load-load behavior of the machine composites was also 
conducted to simulate and analyze the experiments.   A parametric FEA study was performed to 
measure the stress-conversion response as a function of number of cells (that is, 3, 4 or 5 cells), 
material properties, cell aspect ratio, cell spacing, and load cell compliance.    
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B-2.  Experimental 

B-2.1 Fabrication 
Both small (1-mm) Z-machines made of extruded nylon and large (15-mm) Z-machines fabricated 
through rapid prototyping were used to fabricate MACterial samples for testing in this study.  A 
detailed overview of their processing is described in a previous technical report.2  Besides material 
composition, an important difference to note is that the larger, rapid-prototype Z-machines are all 
connected to each other by a common base, whereas the smaller, extruded nylon Z-machines are 
completely separate, lacking a common base (see Figure B-2). 

The rapid-prototype Z-machines and the nylon-extruded Z-machines were also tested without any 
matrix material.  Rapid-prototype Z-machine composites containing 3, 4, and 5-celled volumes were 
utilized.  Angle inclination for the 4-celled composites varied from 45° to 60°.   

B-2.2 Mechanical Testing 
A universal testing machine was used for all testing.  A 2000-lb load cell was used.  The testing rate 
was 0.05 in./min unless otherwise stated.  Two acquisition systems were used to collect data from 
both lateral and vertical load cells using an IOTECH data converter.  A unique experimental set-up 
was developed (Figure B-2) to measure the compressive loads generated by a shear load.  In this 
experiment, two samples were prepared and bonded to the center plate of a double-lap shear test set-
up.  The samples were rotated 180° with respect to each other such that both samples tended to 
increase in thickness when the central plate was pulled down.  The outer faces of the samples were 
bonded to the outer plates, completing the double-lap shear arrangement.  The outer plates were 
attached to the mechanical testing machine in a pendulum-type manner (see Figure B-3).   

 

 

 

(a) (b) 
 
Figure B-2. Z-machines used to fabricate MACterial samples.  (a) 15-

mm rapid prototype machines with a common base.  (b) 1-
mm extruded nylon machines without a common base 
(embedded within a polyurethane matrix). 
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Figure B-3. Experimental set-up used to measure compressive load as 
a function of shear load. 

 
This set-up allowed the outer plates to swing freely against the transverse load cell.  The transverse 
load cell was mounted such that any forces attempting to separate the outer plates put the load cell 
into compression.  Careful inspection of the experimental set-up of Figure B-3 shows that the load 
path coming in from the central plate was not co-linear with the pivot points at the top of the outer 
plates.  This caused a small bending moment around the pivot points at the top of the pendulum, 
which was measured by the transverse load cell.  This effect was small and was neglected for all our 
measurements.    
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B-3.  Results 

B-3.1 Rapid Prototype Z-Machine MACterial Testing 
The results in Figure B-4 show a comparison of the stress conversion behavior of a neat polyurethane 
sample containing no machines in comparison to the stress conversion behavior of a machine-
augmented composite material (MACterial).  The MACterial consists of a 5-celled rapid-prototype Z-
machine within a polyurethane matrix material.  In the case of the neat polyurethane sample, there is 
virtually no relationship between the applied shear load and the measured compressive load.  The 
slight slope in the line can be completely accounted for by the fact that the load input points are not 
co-linear and cause a bending moment around the pivot points of the pendulum arrangement 
(accounts for 7.5 lb lateral load per 100 lb shear load).  The data was not normalized to take into 
consideration this effect.  As expected, the stress conversion behavior of a non-reinforced viscoelastic 
material is minimal.  In comparison, a rapid-prototype ZMACterial utilizing the same polyurethane 
material shows a substantially different effect.  The stress conversion behavior is greatly affected and 
is more in line with a 1:1 stress conversion ratio. 
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Figure B-4.    Stress conversion behavior of an unreinforced polyurethane resin versus a 5 

volume-celled rapid-prototype Z-machine augmented composite utilizing the 
same polyurethane material as the matrix. 
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Figure B-5 shows the relationship of the applied shear load to the resultant lateral compressive load 
for various machine cell volume MACterial specimens.  The effect of 3, 4, and 5-celled MACterials 
on stress conversion behavior is shown.  All of these samples had an original wall inclination angle of 
60°.  The stress conversion was measured to be the same for the three different specimens.  Therefore, 
the effect of cell volume has little consequence on the slope of the line.  A stress conversion factor of 
1:1 was measured, which is quite pronounced. 

The effect of the machine wall inclination angle on the stress conversion behavior of this system was 
also investigated.  Figure B-6 shows a plot of applied shear load to measured lateral compressive load 
for two MACterials with different wall inclination angles.  As shown, if the inclination angle is 
reduced, the stress conversion behavior is also reduced.  As expected, this is in contrast to the 
displacement conversion ratio, which shows the converse, where the displacement conversion 
increases as the angle decreases. 

The effect of lateral compressive preload was also investigated.  The set clamps on our testing device 
were tightened by hand to apply various preloads.  The resultant stress conversion was measured.  
Figure B-7 shows the results from this test on a 3-celled MACterial sample.  The effects on 4- and 5-
celled MACterial samples are similar.  As shown, the lateral compressive preload has a negligible 
effect on the stress conversion behavior.  All of our different preloads yield the same type of end 
result.  However, at very low preloads, below 2.5 lb, there is a lag time before the lateral compressive 
load starts to build with respect to the applied shear load created by the Instron mechanical testing 
machine.  We believe this may just have to do with a critical amount of frictional force that must be 
overcome to prevent slipping of the part prior to load translation. 
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Figure B-5.  Graph shows the effect of Instron vertical shear load on 
the resultant lateral compressive load of our prototype 
composite specimens.  The effect of 3, 4, and 5-celled 
MACterials with a 60° inclination angle are shown. 
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Figure B-6.   The effect of wall inclination angle (45 and 60 degrees) on 
the resultant stress conversion behavior of a 4-celled rapid 
prototype MACterial ( 20-lb preload). 
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Figure B-7.  The effect of lateral compressive preload on the stress 
conversion behavior of a 3-celled rapid prototype Z-
MACterial. 

 
The behavior of the rapid prototype Z-machines is quite consistent with analytical models and 
predictions.  This data has enabled us to fabricate small-extruded Z-shaped machines (For more 
information on the extruded Z-machines refer to [Zaldivar 2]).  The machines are approximately 1-
mm in diameter and have an approximately 60-degree wall inclination angle.  The primary difference 
between the small extruded Z-machines and the larger rapid prototype machines is that the rapid 
prototype machines are all connected to each other by a common base, unlike the completely separate 
and distinct extruded machines.  
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B-3.2 Finite-Element Analysis 
Finite-element analysis (FEA) of the load-load behavior of the machine composites was conducted to 
simulate the experiments.  The experimental sample shown in Figure B-2 was modeled.  For this 
specimen, two layers of plastic machines were encapsulated by rubber matrix and sandwiched 
between a central steel platen and two outer steel platens.  Also, as shown in Figure 2, a load cell 
contacted the outer steel platen.   

The material properties of the rapid prototype material and the polyurethane resin were measured 
independently and used as inputs for the FEA.  The polyurethane was modeled as non-linear elastic 
(hyperelastic), and the rapid prototype material was modeled as linear elastic.  The steel platens were 
modeled as rigid plates because their compliance was expected to be much greater than the machine 
augmented composites.       

As boundary conditions for the FEA model, the central steel platen was pulled in its long direction 
while the two outer platens were locked stationary (or, “cantilevered”) on their outer edges.  In 
practice, the problem’s plane of symmetry was exploited so that only half the problem had to be 
modeled, which provided computational savings.  Consequently, as shown in Figure B-8, the central 
steel platen was bonded to a single outer steel platen by one of the rapid prototype Z-MACterial 
samples, and a symmetry plane was enforced at the problem’s mid-plane.  The load cell was modeled 
in the FEA as a simple one-dimensional spring in contact with the rigid platen, which is shown in 
Figure B-8.  The spring’s compliance was set equal to the load cell’s stiffness.  Quadratic elements 
with reduced-integration formulation were used in the FEA model.  

Figure B-9 shows the comparison of the load-load behavior calculated using the FEA model with the 
load-load behavior measured experimentally.  The FEA results were calculated for a 3-celled machine 
with 55, 60 and 60° angles in order to understand the influence of side wall angle on the stress 
conversion behavior of MACterials.  The experimental sample was a 3-celled machine with a  60° 
side wall inclination angle.   

As can be seen from the figure, the data for the experimental sample matches quite well with the FEA 
results, being bracketed by the FEA results for the 55° and 60° angle machines.  Note that the stress 
conversion behavior increases as the side wall inclanation angle increases.  The slight discrepancy  

 
Figure B-8.   Schematic of finite-element model of the rapid prototype Z-MACterial.  (Rigid steel 

platens in red, rapid prototype machines in green, polyurethane matrix in blue, and 
spring-like representation of load cell’s compliance in black at top.) 
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between the experimental and FEA results may be attributed to the fact that the finite-element models
idealize the side walls as perfectly formed and perfectly straight with a single-valued side wall angle.
In contrast, the experimental samples naturally posses a manufacturing tolerance in the side wall
angle and straightness.  The finite-element model also idealizes the joint between side wall and top
and bottom bases as perfectly sharp-edged, whereas the experimental sample actually possesses a
small fillet at the joint.  Any slight departures of the experimental sample from these ideals might be
responsible for the observed slight discrepancy.  Normal experimental variation may also be
responsible for the discrepancy.

Thus, while there is some discrepancy between the experimental and FEA results, the stress
conversion behavior of the rapid prototype Z-MACterials is quite consistent with the analytical
model.

A parametric FEA study was also performed to measure the load-load response as functions of
number of cells (that is, 3, 4 or 5 cells), material properties, cell aspect ratio, cell spacing, and load
cell compliance.  In all cases, the load-load response was identical as these parameters were varied.
This finding reinforces the notion that the load-load response is determined solely by the geometry of
the machine composites and not by the composite’s material properties.  Specifically, the side wall
angle determines the response.

Figure B-9.  Comparison of FEA results (side wall inclination angles of
55, 60 and 65°) to experimental data (60° side wall angle)
for 3-celled machine composites.
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B-3.3 Small Extruded Nylon Z- Machine MACterial Testing 
The same test set up was used to evaluate the stress conversion behavior of our small extruded nylon 
Z-machine augmented composites.  Initially, tests were performed using the extruded nylon Z-
machines without matrix material (unfilled).  Figure B-10 shows the shear load to lateral compressive 
load graph for one of these samples.  As shown, even with a 20-lb preload applied to prevent slipping, 
the stress conversion behavior was significantly lower than what would be expected for a machine 
with the suggested geometry, as verified using the rapid-prototype Z-machines.  Upon unloading and 
reloading a second time, the slope, or stress conversion, became further depressed, as shown in Figure 
10.  Above 200 lb of axial shear load, the data became somewhat inconsistent, and other factors 
appeared to affect our testing.  
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Figure B-10.  Stress conversion behavior for unfilled extruded Z-
machine sample during first and secondary loading-
unloading cycle. 
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The decrease in stress conversion behavior with sequential loading and unloading is most likely a 
result of force relaxation and/or deformation of the machines.  Since the Z-machines are fabricated 
out of a soft viscoelastic polymeric material, a constant load would be expected to cause creep and 
displacement to relieve applied forces.  However, there may be a number of reasons the system has 
such a low initial stress conversion behavior from the start.  The “actual” shape of the extruded 
machines may be considerably different than designed, and/or the motion of the machine may be dif-
ferent from what our model predicts.  Increasing the loading rate, as shown in Figure B-11, also 
exhibited an apparent increase in the stress conversion behavior of these machines without matrix, as 
would be expected for a viscoelastic material.  The sample tested at a lower loading rate was tested 
previous to the faster loading rate sample to overcome compression set effects that would cause a 
decrease in stress conversion. 
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Figure B-11.  Effect of loading rate on the stress conversion behavior 
of an unfilled small extruded Z-machine sample (0.05 
in/min sample was performed first). 
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Figure B-12 shows sequential photographs of the small extruded nylon Z-machines as a function of 
applied load.  As shown, the initial shape of the Z-machines is not as well defined as they were for the 
rapid prototype Z-machine system.  In Figure 12, many of the extruded machines have side walls that 
are not inclined at the expected 60° inclination angle.  In some cases, the walls appear bowed out or 
convex, like an inverted hourglass.  In addition, unlike the rapid-prototype Z-machine samples that 
have one common base, these machines appear to be oriented in varied positions relative to the base.  
Figure B-13 shows how much of a variation can exist over a very small distance.  Over a spacing of 6  

 

                                              
Figure B-12.    Photographs showing sequential loading of small Z-machines. 

 

 

Angle variations 
Outward 
bulging 

Figure B-13. High-magnification photograph showing variations in   
structure of small extruded Z-machines used in small 
composites. 
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to 7 machines, the inclination angle can vary by as much as 30°.  In addition, many of the machines 
do not appear well bonded to the base, making it difficult to assess their behavior.  The reduced stress 
conversion behavior with additional load and unload cycles may also be due to a debonding 
phenomena.  All of these factors may contribute to the reduced stress conversion behavior.   

The extruded nylon Z-MACterials with polyurethane matrix were then tested.  Again, the behavior of 
these composites was not as well defined as that of the rapid-prototype Z-machine system, and the 
stress conversion behavior was significantly lower, as shown in Figure B-14.  The stress conversion 
behavior was approximately half of what was obtained using the rapid-prototype system.  The reasons 
for this behavior were expected to be the same as those for the unfilled system.  As shown in Figure 
B-15, the shapes of the extruded Z-machines appeared to be highly compromised.  The angles of the 
extruded machines, as well as the bonding to the base plate, varied greatly.  As shown, the 
polyurethane matrix material compressed out from within the composite, which may account for 
some of the force relaxation during testing.  Figure B-16 shows a plot of shear-to-compressive load 
curves for the filled extruded nylon Z-machines that were preloaded to different degrees.  The 
samples were preloaded to 100, 75, 50, and 30 lb.  As shown from the graph, each of the samples 
decreased from its initial preload once testing started.  The highest four preloads were approximately 
10 lb below their initial compressive load.  The 30-lb preload exhibited no relaxation.  As shown, the 
stress conversion behaviors for the samples preloaded above 50 lb were all similar.  However, they 
were still much lower than expected for our intended design.  The 30-lb preloaded sample showed 
absolutely no increase in stress conversion behavior until a shear load of over 100 lb was applied.  
This may have been due to slipping, which occurs during testing if the applied lateral compressive 
load is not great enough to overcome frictional forces.    
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Figure B-14. Shear conversion behavior of polyurethane filled small 

extruded Z-machine composites tested in this study. 
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 (a)     (b)    (c) 
 

Figure B-15. Photographs showing sequential loading of filled small extruded Z-
machine composites. 
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Figure B-16. A plot of shear-to-compressive load curves for the 

polyurethane filled small extruded nylon Z-machines 
that were preloaded to different degrees.   

 

 47



B-4.  Conclusions 

1. A simple testing apparatus was designed and manufactured to test the stress conversion 
behavior of a neat resin and machine-augmented composite materials (MACterials).  The 
stress conversion behavior could be tailored depending on the inclination angle of the 
machines embedded within the MACterials.  The smaller the inclination angle, the lower the 
stress conversion.  Rapid prototype Z-MACterials were shown to have an excellent stress 
conversion behavior of nearly 1:1 for the 60° machines.  In comparison, unreinforced neat 
resin materials exhibited no stress conversion capability. 

2. The effect of machine cell volume was shown to have no effect on the resultant stress 
conversion behavior.  3-, 4-, and 5-celled, filled composites produced identical results when 
the inclination angle was kept constant.  The effect of preload on initial compressive preload 
on the MACterials also had no effect on the resultant stress conversion behavior.  However, if 
the preload approached zero, there appeared to be a lag before the compressive load increased 
with shear load.  We believe this to be due to a necessary buildup in frictional force to 
prevent slipping. 

3. Finite-element analysis (FEA) of the load-load behavior of the machine composites was 
conducted to simulate the experiments.   The stress conversion behavior of the rapid 
prototype Z-MACterials closely matches the finite model.  The discrepancy between the 
experimental and FEA results is attributed to small geometric differences between the 
experimental samples, which have small manufacturing “flaws”, and the finite element 
model, which is idealized and without flaws.    

4. A parametric FEA study was also performed to measure the stress conversion response as a 
function of number of cells (that is, 3, 4 or 5 cells), material properties, cell aspect ratio, cell 
spacing, and load cell compliance.  In all cases, the stress conversion response was identical 
as these parameters were varied.  This finding reinforces the notion that the load-load 
response is determined solely by the side wall angle. 

5. Unloading and loading of the small extruded machine-augmented composite materials 
produced a type of compression set, which reduced the stress conversion behavior.  This 
effect was more pronounced for the unfilled MACterials.  In contrast, the effect of higher 
loading rates versus lower rates also resulted in an increase in the stress conversion behavior.  
Both of these results are due to the viscoelastic behavior of the polymers used in the 
MACterials. 

6. The stress conversion of our extruded nylon Z-MACterials was significantly lower than our 
rapid prototype Z-MACterials.  This may be due to three factors:  the small extruded nylon 
machines did not have as well defined a shape as our analysis required as verified by optical 
microscopy; debonding may have occurred; and/or the small extruded machines did not have 
a common base, as did the rapid prototype samples.  Further studies are underway to better 
define our small extruded Z-machines. 
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7. We have manufactured and tested composites with embedded small machines that modify the 
internal forces within the material.  In this manner, composites can be made that exhibit 
properties that cannot easily be obtained by other means. 
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Appendix C—Theoretical and Finite Element Modeling of the Z-MACs 

 
 
 

Prepared by 
 
 
HUBERTUS F. VON BREMEN, MICHAEL J. O’BRIEN 
CHING-YAO (TONY) TANG and GARY F. HAWKINS 
Space Materials Laboratory 
Laboratory Operations 
 

 
Abstract 

 
 

In this report we present a Finite-Element Analysis (FEA) model and an analytical model based on 
the theory of beam-on-elastic-foundation for the Z-shaped Machine-Augmented Composite (Z-MAC) 
that uses a special compliant mechanism as a constituent structure.  The overall response of the Z-
MAC was compared with results obtained from FEA, beam-on-elastic-foundation theory, and from 
experiments.  A very close match was obtained between the analytical, the numerical, and the 
experimental response of the Z-MAC.   
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C-1.  Introduction 

There is a growing level of interest in microstructures, which is reflected by the large and increasing 
number of publications in this area over the last few decades.  It is the importance and wide range of 
applications of microstructures that has fueled such interest.  Noor et al. [1] discuss smart materials 
and structures, and multifunctional materials and structures in aerospace applications (among other 
topics) in which microstructures play a key role.  Howell [2] focuses on compliant structural mecha-
nisms from large-scale to the micro-scale.  In his book, he presents a wide survey of recent activity in 
the field.   

Composite materials have traditionally been manufactured out of fibers that reinforce a matrix mate-
rial.  The fibers add strength and stiffness to the structure.  The matrix material serves to both hold the 
fibers in place and transfer the load among the fibers.  The type of fiber used, as well as its orienta-
tion, ultimately controls the mechanical behavior of the composite structure.  In the previous report 
(“The Fabrication and Mechanical Behavior of Z-shaped Machine-Augmented Composites” [3]), we 
discuss the fabrication and testing of a new type of composite material that possesses properties not 
otherwise easily attainable today (see also Hawkins G. F., “Augmenting the Mechanical Properties of 
Materials by Embedding Simple Machines” [4]).  These Machine-Augmented Composites (MACs) 
contain simple machines that alter the stresses in the material.  Tailoring the shape of the machines 
allows for a new method to control the properties of composite structures.  The term machine is used 
to describe what the dictionary refers to as “an instrument designed to modify the application of 
power, force, or motion.”  The machines used in the MAC are actually compliant mechanisms.  The 
use of compliant mechanisms provides many advantages in the manufacturing of MACs.  Mecha-
nisms can be built using a single component (no assembly needed) that can be fabricated using extru-
sion, rapid prototyping, or other simple manufacturing methods.  An additional advantage of using 
mechanisms is the fact that they can be easily scaled.  In particular, for very small dimensions (in the 
scale of Micro-Electro-Mechanical Systems), no complicated components like hinges or bearings are 
used,  simplifying the manufacturing process and avoiding complicated assembly.  A wide scope of 
machine shapes can be designed, depending on the requirements of the application.  Our MAC is a 
clear example where microstructures are used to manufacture a composite-like material that possesses 
special properties.  

Researchers have shown that composite materials with unusual properties can be manufactured by 
introducing internal microstructures.  For example, Sigmund and Torquato [5] designed three phase 
composites that have extremal values of the thermal expansion, both positive and negative.  Sigmund 
[6] has also provided a class of two-phase composite materials with extremal bulk modulus.  Lakes et 
al. [7] discuss composite materials with negative stiffness inclusions.  Xu et al. [8] show how to 
manufacture a negative Poisson’s ratio microstructure using a soft lithography technique.  Cederbaum 
et al. [9] present analytical tools to study poroelastic structures (porous structures consisting of an 
elastic matrix containing interconnected fluid-saturated pores).  They also present an extensive list of 
references in the field. 

Scale effects are important in the study of microstructures:  Pecullan et al. [10] present results on the 
scale effects on the elastic behavior of two-dimensional composites, and Bendsoe and Triantafyllidis 
[11] studied the scale effects in the design of a microstructured medium against buckling.  Neves et 
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al. [12] present a topology optimization-based method to design periodic microstructures with 
penalization of localized buckling modes. 

In this report, we present a Finite-Element Analysis (FEA) model and an analytical model based on 
the theory of beam-on-elastic-foundation for a Machine-Augmented Composite (MAC) using what 
we call Z-machines as constituent structures.  The manufacturing process and some experimental 
results of the Z-shaped-Machine-Augmented Composites (Z-MACs) were presented earlier in the 
report, “The Fabrication and Mechanical Behavior of Z-shaped Machine-Augmented Composites” 
[3].  The FEA model and some of the FEA results for Z-machines are presented in Section C-2.  
Section C-3 deals with a model based on the theory-of-beam-on-elastic-foundation.  First, the general 
model is presented along with the special case of no foundation and a description of the vertical and 
horizontal displacement of the MAC.  Next, a comparison of an analytical solution for the 
deformation pattern of the MACs with experimental and FEA results is presented.  The section ends 
with a parametric study on the effect of modulus of the foundation and the flexural rigidity of the 
sidewalls on the deformation pattern of the sidewalls of the Z-MAC.  Conclusions are presented in 
Section C-4 and references in Section C-5.  
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C-2.  Finite-Element Model 

C-2.1 FEA Background 
Finite-Element Analysis solves the field equations of mechanical engineering in order to find the 
overall response of a structure.  The physical structure, which is generally continuous, is represented 
mathematically as an assembly of discrete bodies (or “finite elements”) for each of which equilibrium 
is individually required.  Equilibrium can be solved, for example, in response to a given set of forces 
or displacements applied to the outer surface of the structure (called “boundary conditions”).  An 
important input to the FEA model is an accurate knowledge of the material’s constitutive response as 
a fundamental material property measured independently in the lab.   

The attraction of FEA is that it is possible to predict through “virtual experiments” the response of a 
structure before it is fabricated physically.  Of course, any analysis, whether numerical or closed-
form, requires a model with simplifications and approximations in order to make the problem tracta-
ble.  The calculation of the virtual response is only worthwhile if the model’s starting assumptions are 
validated at an early stage by comparison to an experimental result for a physical structure.  Ideally, 
experiments and FEA calculations are actually complementary, not competitive, and proceed hand-in-
hand to provide a problem’s solution as quickly as possible. 

Once established, however, the validation provides confidence in calculations for structures too com-
plicated or too expensive to be tested experimentally.  The validated model can also be used to 
quickly iterate over a design space to find a structure with optimal properties, a process which is oth-
erwise much more costly and time consuming if physical structures have to be built and tested at each 
iteration. 

C-2.2 Description of the Finite-Element Model 
The mesh was created using the mesh generating program TrueGrid.  This program allows for the 
parameterization of the mesh in terms of geometry-dependent parameters such as machine inclination 
angle, distance between machines, and dimensions of the machines.  The parameterized mesh was 
then used to easily and quickly generate meshes for any desired set of parameters.   

The Finite-Element Analysis was performed using ABAQUS.  Quadratic, reduced integration ele-
ments were used in the analysis, with a hybrid formulation used to model the polyurethane matrix 
material.  These elements were chosen in order to prevent hourglassing and shear locking.  For the 
constitutive formulation, the polymer machines were modeled as an elastic-plastic material, and the 
polyurethane matrix material was modeled as a non-linear elastic (hyperelastic) material.  The mate-
rial constants used in the formulation were obtained from experimental tests.  A two-dimensional 
plane strain model was used in the calculations.  A plane stress formulation was also considered, 
yielding results very close to the results from the plane strain formulation.   
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A full and a reduced model of the machines were used.  Both models generated identical results.  
Exploiting the fact that there is a symmetry plane, the reduced model considered only the upper half 
of the MACs. Most of the simulations were thus performed on the more efficient reduced model.  The 
experimental loading conditions were modeled using vertical displacement boundary conditions on 
the top nodes of the MACs model.  The undeformed mesh of the model used is shown in Figure 1. 

C-2.3 FEA results 
Different MAC configurations were considered.  Here we present some of the results for the 15-mm 
4-celled MACs that were manufactured using rapid prototype with matrix material and a 60° inclina-
tion angle.  The undeformed state of the experimental specimen and the corresponding full finite-
element model are given in Figure C-2.  The deformed state of the experimental specimen and the 
corresponding deformed FEA model are shown in Figure C-3.  The finite-element model clearly 
captures the deformation response of the actual physical phenomenon.  By contrasting the 
experimental pictures from Figures C-2 and C-3, one can observe that, as desired, vertical 
compression gives rise to transverse shearing.  

 
Figure C-1.  Undeformed mesh of the physical model developed using TrueGrid. 
 

 

 
Figure C-2. Undeformed state of the experimental specimen and the corresponding undeformed 

finite-element model mesh. 
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Figure C-3.   Deformed state of the experimental specimen and the deformed finite-element model 

mesh at 10% vertical strain.   
 

Figure C-4 shows the experimental and FEA compressive versus shear displacements for the same 
MAC configuration  (15-mm 4-celled rapid-prototype MACs with matrix material and a 60° inclina-
tion angle).  There is close agreement between FEA results and the experimental values, particularly 
for smaller displacements.  The figure also shows the compressive versus shear displacements from 
FEA results for 50° and 70° machine inclination angles.  
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Figure C-4.  Experimental and FEA compressive versus shear displacements for 15-mm 4-celled 
rapid-prototype MACs with matrix material for various machine inclination angles.  The 
experimental results are for 15-mm 4-celled rapid-prototype MACs with matrix material 
and a 60° inclination angle, and the FEA solutions are for similar machines with 50°, 60° 
and 70° inclination angles.   
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C-3.  Beam-on-Elastic-Foundation Model 

C-3.1  Theory of Beam-on-Elastic-Foundation 
The theory of beam-on-elastic-foundation (see Hetényi [13], or Boresi [14]) can be used to obtain an 
analytical solution for the deformation of the MACs under compressive loading.  As can be seen in 
Figure C-5, the sidewalls of each machine act like a beam on an elastic foundation, which is provided 
by the matrix material.  The closed-form solution allows us to understand the influence that the 
different parameters have on the deformation pattern.  The closed-form solution will also permit us to 
easily optimize the MAC design. 

 
5a 

 
 
 

 

Distributed Load Q 

N
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Foundation 

Beam 

Distributed Load QP 

N
Foundation 

Beam 

 
 
 
 
 
 
 

5b  5c 
 

Figure C-5. Physical problem modeled as a beam-on-elastic foundation.  The sidewall (beam) is sup-
ported by the compliant matrix material (foundation).  The applied force (F) on the 
material consists of 2 components perpendicular (P) and parallel (N) to the sidewall.  
Any internal pressure inside the machines is represented by a distributed load (Q).  
Figure 5b is a model of the undeformed beam on foundation.  Figure 5c is a model of the 
deformed beam on foundation. 
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C-3.2 Solution for the Beam Displacement Under Bending and Axial Loading 
The sidewalls of the machines can be considered to be a beam, and the matrix material an elastic 
foundation.  When the MACs are under compressive loading, the sidewalls experience axial and 
bending loads.  By applying the theory of beam-on- elastic-foundation to the problem, one obtains a 
boundary value problem.  The differential equation of the displacement of the sidewall under axial 
compression and a transverse load is given by  

 0)(
2

2

4

4
=++ xky

dx
ydN

dx
ydEI , (1a) 

and the differential equation of the displacement of the sidewall under axial tension and a transverse 
load is given by 

 

 0)(
2

2

4

4
=+− xky

dx
ydN

dx
ydEI , (1b) 

where is the displacement of the beam (sidewall), x is the position along the beam, E is the 
beam’s Young’s modulus, I is the beam’s moment of inertia, k is the foundation spring constant, and 
N is the axial load. 

)(xy

The boundary conditions used in the formulation are  

 , 0)0( =y 0)0( =′y , 0)( =′ Ly and 
EI
PLy =′′′ )( , (2) 

where L is the span of the beam, and P is the applied (transverse) bending load. 

The solution of the boundary value problem for the case of axial compression given by Eqs. (1a) and 
(2) is 

      y FEDCBAPx /)()( −+−+−= , with 
)cos()sinh()cos()sinh(2 xxLLA αβαβα= , 
)cos()sinh()sin()cosh( xxLLB αβαβαβ= , 
)sin()cosh()cos()sinh( xxLLC αβαβαβ= , 

)sin()sinh()sin()sinh()( 22 xxLLD αβαββ+α= , 
)sin()cosh()sin()cosh(2 xxLLE αβαββ= , 

)2sinh())()2sin()(( 2323 LLEIF βαβ+α+αβα+βαβ= , (3a). 
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The solution of the boundary value problem for the case of axial tension given by Eqs. (1b) and (2) is 

FEDCBAPxy /)()( −+−+−= , with 
)cos()sinh()cos()sinh(2 xxLLA βαβαβ= , 
)cos()sinh()sin()cosh( xxLLB βαβααβ= , 
)sin()cosh()cos()sinh( xxLLC βαβααβ= , 

)sin()sinh()sin()sinh()( 22 xxLLD βαβαβ+α= , 
)sin()cosh()sin()cosh(2 xxLLE βαβαα= , 

)2sinh())()2sin()(( 2323 LLEIF αβα+β+βαβ+ααβ= , (3b) 
 

where 
EI
N

EI
k

44
+=α  and 

EI
N

EI
k

44
−=β  in both Eqs. (3a) and (3b). 

 
The solution  Eq. (3b) can be obtained from Eq. (3a) by simply exchanging α and β in Eq. (3a). 

In the Subsection 3.4, we present a comparison of experimental results and the analytical solutions 
given by Eqs. (3a) and (3b).  However, we will first consider the special case of formulation with an 
absent foundation. 

As a special case, in the absence of a foundation ( 0=k ) we simply have a cantilever beam where the 
displacement of the beam is given by the differential equation )(xy

 0
2

2

4

4
=+

dx
ydN

dx
ydEI , (4a) 

in the case of axial compression, and  

 0
2

2

4

4
=−

dx
ydN

dx
ydEI , (4b) 

in the case of axial tension.  The boundary conditions are the same as given in Eq. (2).   

The solution of the boundary value problem for the axial compression case is given by 

 
)sin(

))cos()cos()cos()sin()sin()sin()cos(1()(
LN

LxxLxLxLPxy
µµ

µµ−µ+µµ−µµ+µ+−
= , (5a) 
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and the solution for the axial tension case is given by 

 
)1(

)1()(
)(

L

xLxLL

eN
eexexePxy

µ−

+−µµ−µ−µ−

+µ

−+µ+µ++−−
= .  (5b). 

In both Eqs. (5a) and (5b),  

EI
N

=µ . 

C-3.3 Global Vertical and Horizontal Displacement of the MACs 
The maximum y-displacement in Eqs. 5a and 5b occurs at Lx = .  For the case of axial compression, 
the largest displacement of the beam is given by  

 





 µ

−
µ

µ
−=

2
)

2
tan(2

max
LL

N
Py . (6) 

For the case of axial tension, the largest displacement of the beam is given by 

 





 µ

−
µ

µ
−= )

2
tanh(

2
2

max
LL

N
Py . (7) 

The above formulas of the maximum displacement of the beam can also be obtained from Roark’s 
Formulas for Stress & Strain (Young, W.C.) [15] by using the formulas for beams under simultane-
ous axial compression and bending for a case of a beam that is fixed at the left and the right. 

A simple relation between the horizontal and vertical displacement of the free end of the sidewall can 
be established by considering the sidewall as a rigid link pinned at one end.  Figure C-6 shows a sche-
matic of the pinned link depicting the vertical and horizontal displacements at a given inclination 
angle θ  of the link (sidewall).  The equation of the vertical position y of the link (“free end” of the 
sidewall) is given by 

y

x

y∆

x∆

),( yx

θ

r
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x∆

),( yx

θ

r

 
Figure C-6.   Schematic of the pinned beam (link) depicting the vertical and 

horizontal displacements at a given inclination angle θ .  
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 22)( xrxfy −== , (8) 

where x is the horizontal position of the “free end” of the sidewall, and r is the total length of the link.  

From calculus we have that  

 
y
x

xr

xxf
x
y

−=
−

−=′≈
∆
∆

22
)(  (9) 

for small values of the horizontal displacement x∆ .  Here y∆  is the vertical displacement of the free 
end of the sidewall.  From the geometric relations )cos(θrx =  and )sin(θry = , it is clear that Eq. 
(9) becomes 

 
)tan(

1
θ

−≈
∆
∆

x
y . (10) 

It should be noted that the ratio of the displacements in Eq. (10) depends solely on the inclination 
angle of the link and not on any material property of the link. 

Figure C-7 shows the displacement of the “free end” of the sidewall, which corresponds to the overall 
compressive and shear displacement of the MAC structure.  The thick line corresponds to the beam-
on-elastic-foundation results.  This curve includes several overlapping curves corresponding to differ-
ent values of the modulus of the foundation for machines with an inclination angle of θ = 60°.  In 
other words, the shape of the displacement trajectory of the “free end” of the sidewall of the MAC is 
independent of the foundation modulus (for the ranges of displacements and parameter values here 
considered).  The thin lines with circles are the results from Eq. (10) (with a sign change).  There is a 
very close match between the approximations using Eq. (10) and the beam-on-elastic-foundation 
results for the machine inclination angle of θ = 60°.  See also Figure 4 for a similar plot showing 
experimental and FEA results. 

C-3.4   Comparison of the Analytical Solution and Experimental Results 
Using Eq. (3a), one can obtain the deformation pattern of the sidewalls of the MACs when undergo-
ing compressive loads.  Figure C-8 shows the experimental, FEA, and theoretical [based on Eq. (3a)] 
deformed state of the sidewall of a 15-mm 4-celled rapid-prototype MAC with matrix material and a 
60° inclination angle.  The theoretical deformation pattern obtained from the theory of beam-on-
elastic-foundation captures very closely the actual deformation pattern obtained from the experiments 
and is in very close agreement with the FEA results.   

 61



0 0.5 1 1.5 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Compressive displacement (mm) (∆y) 

Sh
ea

r d
is

pl
ac

em
en

t (
m

m
) (

∆
x)

 
θ  = 80 

θ  = 70 

θ  = 60 
θ  = 50  
θ  = 40  

θ  = 30 θ  = 20  

 
Figure C-7.   Displacement of the “free end” of the sidewall, which corresponds to the compressive 

and shear displacement of the MAC structure.  Thick line corresponds to beam-on-
elastic-foundation results for an inclination angle of θ = 60°.  The thin lines with circles 
are the results using Eq. (10) for various inclination angles, θ. 
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Figure C-8.  Experimental (15-mm 4-celled rapid-prototype MACs with matrix 

material at a 60° inclination angle), FEA, and beam-on-elastic-
foundation solution of the deformed state of the sidewall.  
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Note: the following nominal values are used throughout Subsections 3.4, 3.5 and 3.6: 

 flexural rigidity, EI = 9.24*10–2 N*m2 

 foundation stiffness,  k = 3.191*108 N/m2 

 length (span) of the beam,  L = 0.013 m 

 (all units are in SI units) 

In Figure 8, a foundation stiffness of 5k was used (and all other values were taken as nominal). 

C-3.5   Effect of the Modulus of the Foundation on the Deformation Pattern  
of the Beam 

The effect of the modulus of the foundation on the deformation patterns of the beam is captured in 
Figure C-9.  The deformation patterns corresponding to different values of the modulus of the founda-
tion (k) with the nominal flexural rigidity value using Eq. (3a) are shown in the figure, together with 
an experimental deformation (see also Figure C-8) and the limiting case of k marked with ‘+’ 
(using Eq. 5a).  The sidewall inclination angle in this case is θ = 60°. 

0=

As the modulus of the foundation decreases and gets closer to 0=k , the deformation pattern of the 
sidewall approaches the deformation pattern of a beam in the absence of a foundation. 
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 Figure C-9.   Effect of foundation modulus (k) on the deformation pattern on 

the sidewalls of the MAC. 
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In all the cases presented, the displacement of the “free end” of the sidewall was kept to be constant; 
that is, in all cases the deformation patterns of the sidewall are taken at the same (constant) vertical 
displacement of the MAC.  The required applied force needed to obtain the constant vertical dis-
placement of the “free end” of the sidewall for different values of the modulus of the foundation is 
presented in Figure C-10.  
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Figure C-10.   Required applied load needed to obtain the constant vertical displacement of the 
“free end” of the sidewall for different values of the modulus of the foundation.  (a) 
linear scale; (b) logarithmic scale. 

 
Figure C-11 shows the applied load as a function of vertical (compressive) displacement of the “free 
end” of the sidewall for different values of the modulus of the foundation.  As expected, as the 
modulus of the foundation increases, a larger load is needed in order to obtain a given vertical dis-
placement of the MAC. 

C-3.6 Effect of the Flexural Rigidity (EI) of the Beam on its Deformation Pattern  
The effect of flexural rigidity (EI) of the beam (sidewall) on the deformation pattern of the beam is 
shown in Figure C-12.  The deformation patterns corresponding to different values of the flexural 
rigidity using Eq. (3a) are shown in the figure, together with an experimental deformation.  Here the 
nominal value of the stiffness of the foundation (k) is used and the flexural rigidity is varied. 

As the flexural rigidity increases, the deformation pattern of the sidewall approaches the deformation 
pattern of the beam in the absence of a foundation.  A large flexural rigidity of the beam makes the 
contributions of the foundation to the deformation pattern insignificant. 

As before, in all the cases presented, the displacement of the “free end” of the sidewall was kept to be 
constant.  The required applied force needed to obtain the constant vertical displacement of the “free 
end” of the sidewall for different values of the flexural rigidity is presented in Figure C-13. 
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Figure C-11.   Applied load as a function of compressive displacement of 

the MAC for different values of the modulus of the 
foundation. 
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Figure C-12.   Effect of the beam flexural rigidity (EI) on the deformation pattern 

of the sidewall of the MAC. 
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Figure C-13.   Required applied load needed to obtain the constant vertical displacement of the “free 

end” of the sidewall for different values of the flexural rigidity.  (a) linear scale; (b) 
logarithmic scale. 
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Figure C-14 is very similar to Figure C-7 and it shows the compressive versus the shear displacement 
of the “free end” of the sidewall as the system is loaded.  As the load increases, the compressive dis-
placement increases, and due to the “machine” action, the shear displacement increases.  The results 
reflected on the figure were generated using the beam-on-elastic-foundation formulation (Eq. 3a).  
The same curve is generated when using different values of the flexural rigidity (while keeping the 
stiffness of the foundation fixed), and the curves overlap exactly.  In this way, Figure C-14 shows that  

 

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Compressive displacement (mm) (∆y)

S
he

ar
 d

is
pl

ac
em

en
t (

m
m

) (
∆

x)

0.1 EI
EI    
5 EI  
10 EI 

 
Figure C-14.   Displacement of the “free end” of the sidewall, which corresponds to the 

compressive and shear displacement of the MAC structure. 

 66



the overall displacement of the MAC, i.e., the ratio of vertical versus horizontal displacement, is inde-
pendent of the modulus of the foundation and the flexural rigidity of the beam (as suggested in Eq. 
(7)). 

Figure C-15 shows the applied load as a function of vertical (compressive) displacement of the “free 
end” of the sidewall for different values of the beam flexural rigidity.  As expected, as the flexural 
rigidity of beam increases, a larger load is needed in order to obtain a given displacement of the 
MAC. 
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Figure C-15.   Applied load as a function of compressive displacement of the MAC structure for 
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C-4.  Conclusions 

The overall response of Machine-Augmented Composites using a Z-machine structure was studied 
using FEA techniques and the theory of beam-on-elastic-foundation.  Results from the FEA, the 
beam-on-elastic-foundation, and from experiments were compared.  A very close match between the 
analytical, numerical, and experimental results was obtained.  This gives us confidence in the FEA 
model used and in the analytical solution obtained from the theory of beam-on-elastic-foundation.   

Based on the results reported in this report, the following conclusions can be drawn: 

• There is a very close match between the FEA results and the experimental results (see 
Sections C-2 and C-3).  The close match is observed in the global behavior of the MAC 
(shear versus compressive displacement of the whole MAC), as well as in the local 
behavior of the MAC (deformation pattern of the sidewalls of each individual machine 
embedded in the MAC). 

• The deformation pattern of the sidewalls of the machines obtained from the theory of 
beam-on-elastic-foundation captures very closely the actual deformation pattern obtained 
from the experiments and FEA.  

• A parametric study was performed by varying the modulus of the foundation (stiffness of 
the matrix material in the MAC) using the analytical results based on the beam-on-
elastic-foundation theory.  In all cases, the MAC was deformed so that the same vertical 
displacement of the “free end” of the sidewall was obtained.  For large values of the 
foundation modulus, the deformation of the sidewall near the “free end” was large.  As 
the modulus of the foundation was decreased, the overall deformation of the sidewall 
decreased, and in the limit case of a foundation with zero modulus, the sidewall acted as a 
simple cantilevered beam.  It was also observed, as expected, that the larger the modulus 
of the foundation, the larger the applied load needs to be in order to obtain the same con-
stant vertical displacement of the “free-end” of the sidewall.  

• A similar parametric study was performed by varying the flexural rigidity of the sidewall 
(EI) using the analytical results based on the beam-on-elastic-foundation theory.  In all 
cases, the MAC was deformed so that the same constant vertical displacement of the 
“free end” of the sidewall was obtained.  For small values of the flexural rigidity the 
deformation of the sidewall near the “free end” was large.  As the flexural rigidity was 
increased, the overall deformation of the sidewall decreased, and in the limit case of a 
“large” flexural rigidity, the sidewall acted as a simple cantilevered beam (with little 
effect from the foundation).  It was also observed, as expected, that the larger the flexural 
rigidity, the larger the applied load needs to be in order to obtain the same vertical dis-
placement of the “free-end” of the sidewall.  
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• The global response of the MAC appears to be independent of the modulus of the foun-
dation and the flexural rigidity of the sidewall.  It was observed that the compressive ver-
sus shear response of the MAC was identical for all the values of the foundation modulus 
and all values of the flexural rigidity of the sidewall considered.  This suggests that the 
overall compressive versus shear response of the MAC depends more on the geometry of 
the constituent machines and less on the material properties of the constituent compo-
nents of the MAC.  
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Appendix D—Damping Capabilities of Fluid-Filled Machine-
Augmented Composites 
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Abstract 
 
The Machine-Augmented Composite (MAC) concept has been extended to develop a new 
type of structural damping material. Embedded within a composite are many fluid-filled 
machines that dissipate vibrational energy. The material can be designed for use in low 
frequency applications such as the structural damping of buildings or bridges, as well as in 
the damping of higher frequencies, such as those encountered by launch vehicles, airplanes, 
and automobiles. 
 
This report focuses on the experimental results of MACs embedded with fluid-filled Z-Shaped 
machines (Z-machines) and the analyses that have led to the investigation of fluid-filled hour-
glass machines, which are, in theory, more effective dampers than the studied Z-machines.  
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D-1. Introduction 
 
 
The Machine-Augmented Composites concept has been extended to develop a new type of structural 
damping material. The main purpose for embedding fluid-filled machines in a matrix material is to 
dissipate vibrational energy. Any compression of the fluid-filled machines causes the top and bottom 
layers of the machines to collapse closer to each other. This motion decreases the machine’s internal 
area, which causes the fluid inside the machine cells to flow. The greater the dissipation rate (i.e., the 
greater the fraction of fluid being forced out per unit time), the better the machines are for damping.  
 
This material with embedded fluid-filled machines can be designed for use in low frequency 
applications such as in the structural damping of buildings or bridges. Alternatively, the material may 
also be designed to damp higher frequencies, such as those encountered by launch vehicles, airplanes, 
and automobiles.  
 
The first half of this report will provide a brief description of the fabrication of Z-shaped Machine-
Augmented Composites as well as the Dynamic Mechanical Analysis (DMA) experimental procedure 
involved in obtaining the damping characteristics of this material. Results of these data will be 
discussed. The second half of the report introduces the hourglass fluid-filled dampers, the theory in 
classifying their behavior, and Finite-Element Analysis results that further augment the appreciation 
of their unique properties.  
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D-2.  Z-Machines as Fluid-Filled Dampers 
 
 

D-2.1 Fabrication of Z-shaped MACs 
The Z-machines used for damping are approximately 1.0 mm in cross-section and were extruded from 
nylon stock by Extrusioneering, Inc., located in Temecula, CA. The sizes of these machines can be 
varied, depending on the desired application. Figure D-1 shows the cross-section of one of these 
extruded Z-machines.  
 

 
 Figure D-1.  SEM of extruded nylon Z-machines. 

  
 

D-2.2 Experimental Procedure 
The processing steps incorporating these Z-machine segments into a composite were patterned after 
current composite practices. The extruded Z-machine segments were laid down, side-by-side in a 
specially designed grooved Teflon mold, and adhesively bonded (3M Super 77 Spray Adhesive) to a 
polyester scrim cloth. This assembly represents one ply of machines. To produce a composite 
laminate, the single ply of machines was impregnated with a room-temperature-curing polyurethane 
resin matrix material (Smooth-On PMC-121/30) and placed in an evacuated bell jar to outgas the 
polyurethane as it polymerized and hardened. The ends of the machines were sealed beforehand with 
an adhesive (5-minute epoxy) to prevent polyurethane rubber matrix from infiltrating the cells. After 
the polyurethane cured, the sealed sample ends were trimmed off with sharp scissors so that the open 
machine ends were exposed as seen in Figure D-2. 
 

 
 Figure D-2.  Z-shaped Machine-Augmented Composites.  
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Dynamic Mechanical Analysis (DMA) tests were done using an EnduraTEC ELectroForce ELF 
3200 material testing system, as shown in Figure D-3, to determine the tan δ (tan delta) values as 
functions of frequency and dynamic amplitude of our samples.  
 
We tested samples that included the following: 1) machines embedded within a rubber matrix, 2) 
machines not embedded within a rubber matrix, 3) machines embedded within a rubber matrix and 
filled with water, 4) machines embedded within a rubber matrix and filled with 13,000 centipoise 
silicone oil, 5) machines embedded within a rubber matrix and filled with 30,000 centipoise silicone 
oil, and 6) polyurethane rubber (matrix alone). To fill samples, we used a syringe to inject fluid into 
each cell until the fluid came out the other end of the cell. Bubbles (or air gaps) were intentionally 
induced inside the cells to provide a lower pressure region for the fluid to flow.  
 
Prior to the test, we specified the dimensions of our specimen and configured the setting inside the 
DMA control software of WinTest (Figure D-4) such that the dynamic amplitude = 20 µm, mean 
level rate (rate the control system will use to ramp to the mean level) = 0.5 mm/s, mean level = -0.02 
mm, dwell at mean = 5 s, load hold value  (the value that the test system will use when temperature is 
changed and between test conditions) = -10 N, and pre-cycle = 20 s. There were typically 10 
conditions that we ran, which ranged from 1 Hz to 100 Hz. The average dimensions of the specimen 
were usually 40 mm in length, 25 mm in width (≈ 14 cells), and 1.25 mm in thickness.  

 
 Figure D-3.  EnduraTEC ELF 3200. 

 
 

 
 

Figure D-4.  Screenshot of WinTest DMA.
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During testing, the EnduraTEC ramps to the specified mean level, which is held for a specified time 
to allow for any creep or relaxation to occur prior to dynamic testing. It then calculates the start 
parameters (auto-tuning). Once the dynamic cycling has begun, the system pre-cycles the specimen a 
specified number of cycles to allow for amplitude control and specimen stabilization prior to actual 
data acquisition. Data is taken at an optimum acquisition rate for Fast Fourier Transform (FFT) 
analysis at that specific frequency of testing. The dynamic cycling is then stopped and the system 
again ramps to the original mean level. At the same time, data is stored to minimize dynamic cycling 
of the specimen and to prepare for the next test condition.  
 
Using FFT analysis, the DMA software determines the fundamental frequency of data collected for 
each test condition and calculates the viscoelastic properties of the specimen. For materials, the 
analysis software calculates the tangent of the phase between the reference channel and feedback (tan 
δ) and uses the specimen shape to convert the stiffness and phase information to complex modulus 
(G*), storage modulus (G’), and loss modulus (G”).  
 
By analyzing results obtained from DMA tests and comparing them with the findings from theoretical 
analysis, we can explain and validate the behavior of tan δ and load vs. displacement curves. 
 
 
D-2.3 Experimental Results and Discussion 
Various measurements of tan delta were taken which allowed us to capture damping capabilities and 
characterize the damping behavior of the Z-machines. Each data curve depicts the frequency response 
of tan δ for the samples and was plotted from the averages gathered from four separate runs in order 
to minimize any error associated with inconsistencies and fluctuations during the test.  
 
Figure D-5 shows the curve of tan δ vs. frequency for unfilled Z-machines and for polyurethane 
rubber, which is the material used as matrix inside the machines. As seen by the low tan δ values, Z-
machines alone (without filling or rubber matrix) demonstrate very little damping ability. However, 
when these unfilled Z-machines are embedded within the polyurethane rubber matrix, the tan δ value 
increases significantly and the unfilled machines become fairly good dampers. On average, from the 
curves seen in Figure D-5, it seems that the tan delta values of unfilled Z-machines with matrix are 
the results of the combined tan delta values of rubber and unfilled Z-machines without matrix.  
 
From the data seen in Figure D-5, it can be observed that damping decreases as frequency 
increases. This property is due to the fundamental relationship between loss modulus and 
storage modulus, which enables us to calculate tan δ.  Loss modulus is directly proportional 
to the frequency while storage modulus is proportional to the square of the frequency. Since 
tan δ is defined as loss modulus divided by storage modulus, we can infer that tan δ is 
proportional to the inverse of the frequency (refer to Section D-3.2.3 for greater detail).  In 
this way, no matter how effective a damping material may be, its damping ability will always 
drops off at higher frequencies.   
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 Figure D-5.  Damping capabilities of unfilled Z-machines.  
 
 
 
In Figure D-6, the Z-machines (both with and without matrix material) were tested after being filled 
with a fairly high viscosity fluid: 13,000-centipoise silicone oil.  The silicone oil acts as a dissipative 
fluid that “drains out” energy during the constant cyclic deformation.  In testing the Z-machines with 
matrix material, tan δ values for filled Z-machines (i.e., filled with silicone oil) were roughly 30% 
higher than that of the unfilled Z-machines (i.e., no silicone oil).   
 
In testing the machines not embedded within a matrix material, the percentage increase between filled 
and unfilled machines is even greater, with the filled machines also without matrix material having a 
tan delta value ~50% greater than the unfilled machines without matrix material.  The reason for the 
lower percentage increase for machines with matrix material might be attributed to the counteracting 
force the rubber had on the overall deformation of the system, where an equilibrium deformation may 
have been reached (note:  still, it is not the percentage increase in damping that we are pursuing, but 
rather the absolute tan delta value achievable).  
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 Figure D-6. Damping capabilities of Z-machines filled with 13,000 

centipoise silicone oil, with and without rubber matrix.  
 
Figure D-7 is a compilation of the curves from Figure D-5 and Figure D-6 with two additional cases: 
Z-machines with rubber matrix filled with 30,000 centipoise silicone oil and Z-machines with rubber 
matrix filled with water.  
 
One of the most intriguing characteristics we have discovered from the DMA testing of Z-machines is 
that lower viscosity fluids provide higher damping capabilities. This is counterintuitive, especially 
when all the theoretical descriptions say otherwise. In various literature, energy dissipation increases 
as the viscosity of the fluid increases, and as cell size decreases.  In addition, all equations and 
formulas used to calculate damping capacity and pressure profile within a cell have viscosity as the 
numerator, which would suggest that higher viscosity fluids result in more effective damping 
material.  However, in Figure D-7, tan δ results for water-filled Z-machines are the highest.  This is 
unexpected, as water has the lowest viscosity among all the fluids used.  The 30,000 centipoise 
silicone oil has the highest viscosity, but its damping capability is less than that of water-filled and 
13,000 centipoise silicone oil filled machines. If the data is correct, then adding water into cell 
cavities significantly increases the energy dissipation of unfilled Z-machines by 67 – 130%.     
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Figure D-7.  Measurements of the damping as a function of the frequency.  
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D-3.  Hourglass Machines as Fluid-Filled Dampers 
 
 
D-3.1 Background 
With an understanding of how machines behave when embedded in a matrix material, we were able 
to design and analytically explore a fluid-filled hourglass damping machine.  Knowing that increasing 
fluid dissipation increases damping, we were able to analytically explore various tube designs which 
would be effective dampers.  Engineering analysis showed that the most efficient tube design to force 
fluid through a medium was by way of an hourglass-shaped tube. Unlike Z-machines, which convert 
compressive force into shear force, resulting in small volumetric change, the hourglass machines 
change volume substantially under compression. Therefore, exploiting the behavior of this unique 
shape would result in a higher fluid dissipation rate. A cross-section of the machine is shown in 
Figure D-8.  When this machine is put into compression the walls buckle towards each other and 
reduce the enclosed area.  This results in a pressure increase of the fluid contained in that enclosed 
volume.  In a machine made with this cross-section, the pressure increase will cause the fluid to flow 
to a lower pressure area.  In our design, we intentionally induce bubbles in the fluid to provide a 
region for the fluid to flow.  
 

Compressive 
Force 

Internal Volume Changes Due to Compressive Force 

 
 
 
 
 
 
 Resulting 

Force  
 
 
 
 
 
 
 
 Figure D-8.  When subjected to compression, the walls buckle 

inward and reduce the enclosed volume.  
 
 
D-3.2  Theoretical Description 
This section provides a theoretical approach for us to appreciate the behaviors of the 
hourglass machines. By analyzing the basic underlying physical properties and 
characteristics that govern hourglasses, we can optimize the design of the hourglass machines 
more easily and efficiently.   
 
 
D-3.2.1 Determination of Flow Characteristics 
To better understand the behavior inside fluid-filled machines in general, we would need to 
know the basic governing properties of flow within the “pipe.” One dimensionless quantity, 
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which is a characteristic of fluid flow, is the Reynolds number. The Reynolds number 
determines whether the flow is laminar or turbulent and is defined as the following: 
 

µ
ρ udl=Re        (1) 

 
where, ρl is the density of the liquid, u is the fluid velocity, d is the diameter of the flow channel (cell 
size), and µ is the dynamic viscosity of the fluid. Experiments have shown that the critical value for 
transition from laminar to turbulent flow occurs at Rec = 2100. Poiseuille or laminar flow (Re < Rec) 
through a straight pipe is found to occur at approximately Re < 30. 
 
For approximation purposes, suppose that the hourglass machines were filled with 13,000 centipoise 
silicone oil. Assume the opening of the cells is 2 mm (= 0.002 m) in height, which we will 
approximate as the diameter. The fluid inside the cell would have a low velocity when under 
compression, u ≤ 2 mm/s (= 0.002 m/s), and a density of 948 kg/m3. Therefore, we are operating, at 
most, at a value of Re = 2.9*10-4. This value is well below the value required for a Poiseuille flow; 
therefore the fluid flow inside the cell would be laminar.   
 
Work is done by forcing (squeezing) the fluid through the pipe. This means that the more fluid being 
forced out or the longer the force is applied, the more energy dissipation we get. If the flow is 
turbulent (Re > Rec), work must be done to compensate for the loss of kinetic energy. 
 

D-3.2.2  Pressure Profile Approximation 
Assuming that the hourglass cells within the machines have constant volume, are round, and 
that only 2-D effects are considered, we can then approximate the fluid flow within the 
“pipe” as a simple Poiseuille flow. This is a simple and rough estimation.  
For our approximation, we will assume steady, fully-developed flow. Therefore, from continuity we 
have 
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where, u is the velocity component in the x-direction and v is the velocity component in the y-
direction. From these assumptions along with no slip condition near the wall, Equation (2) gives  
v = 0 everywhere. From the y-momentum equation, we have 
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where, ρ is the density of the fluid, µ is the dynamic viscosity, p is the pressure of the flow, and g is 
the acceleration due to gravity. Using the consequence of Equation (2) and integrating the above 
equation to get the total pressure of the flow in the y-direction, we have the following equation: 
 

)(xpgyp +−= ρ       (3) 
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Differentiating Equation (3) with respect to x, we see that the pressure only varies in the x-direction.  
 
From the x-momentum equation, we have 
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Using the same result obtained from Equation (2) and integrating the x-momentum equation twice to 
obtain u, we have the following: 
 

21
2

2
1)( cycy

dx
dpyu ++=

µ
     (4) 

 
Applying the boundary conditions for no slip condition, we find that c2 = 0 and  
c1 = -(1/2)(h/µ)dp/dx. Substituting the value of c1 and c2 into Equation (4), rearranging, and then 
substituting y = h/2 (along centerline), we get 
 

u
hdx

dp
2

8µ
−=        (5) 

 
where, h is the height of the cell or “pipe.” Equation (5) represents the total change in pressure along 
x. 
 
Integrating Equation (5) gives us the total pressure of the flow in the x-direction for a given tube 
length. 
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h

pxp 20
8)( µ

−=−       (6) 

 
If we assume that u ≤ 2 mm/s (= 0.002 m/s), the silicone oil has a dynamic viscosity of 13,000 
centipoise (= 13 Pa*s), the height of the cell is about 1.9 mm (0.0019 m) after compression, and the 
length of our sample is 50 mm (0.05 m), then p(x)-p(0) = 0.42 psi above gauge pressure for each cell. 
Because the fluid flow inside the hourglass cell was initiated due to compression or change in area of 
tube, the value of p(x)-p(0) gives the equivalent value of pressure difference had the flow been 
instigated by a pressure gradient.  
 
 

D-3.2.3  Measures of Damping   
Damping is a measure of the rate of energy dissipation by a structure that takes place during 
its cyclic deformation.  A useful dimensional parameter that has no physical magnitude is the tan δ, 
which gives a measure of the ratio of energy lost to energy stored in a cyclic deformation.  
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=δ        (7) 

 
where, G” is defined as the loss modulus and G’ is the storage modulus. The loss modulus (G”) is the 
stress 90° out of phase with the strain divided by the strain, and it is a measure of the energy 
dissipated or lost per cycle of sinusoidal deformation. The storage modulus (G’) is the stress in phase 
with the strain in a sinusoidal shear deformation divided by the strain, and it is a measure of energy 
stored and recovered per cycle.  
 
The tan δ parameter determines material properties such as the damping of free vibrations, the 
attenuation of propagated waves, and the frequency width of a resonance response. It is often 
measured more readily and is of considerable interest compared to any other viscoelastic function in 
that a high tan δ value corresponds to an effective damping material.   
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A good damping material has a higher  tan δ value than a stiffer material. The typical value of tan δ 
for a steel bar is roughly 0.001.  If we take our Machine-Augmented Composites to be a simple mass-
spring-dashpot system, the matrix (polyurethane rubber) and the machine itself are the “spring” of the 
system and the fluid within the cells is the “dashpot.” As seen from Equation (7), in order to increase 
tan δ, we could either decrease the storage modulus or increase the loss modulus. Generally, it is 
easier to increase the loss modulus by increasing the volume fraction of “dashpot” in our system. 
From literature, G’ is proportional to the square of the frequency (ω2) while G” is directly 
proportional to the frequency (ω) (Ferry1). Therefore, one may deduce from these approximations the 
behavior of tan δ, when plotted against frequency, to be the inverse of the frequency (ω-1).  
 
Perhaps the most commonly used measure of damping seen in literature is the loss factor 
(coefficient), η, which represents the ratio of the energy removed per radian to the stored vibrational 
energy (Ungar4, 5).  In this way, loss factor is equivalent to tan δ.  One may encounter one or the other 
in various literature, but in this report they may be used interchangeably.  
 

      (8) 

where, Ψ is the damping capacity, D is the energy that is removed from the system per cycle, and W 
denotes the vibrational energy stored in the system (can usually be approximated as kinetic energy 
plus potential energy). For approximation purpose, take D as the energy dissipated for a square tube 
using Equation (33) in “Viscous Dissipation in Machine-Augmented Composites” (Karion3) and 
multiply that by a factor of 1/f for energy dissipated per cycle.  
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where, K = 28.4616 is the shape factor for a square, f is the frequency (cycles/second), µ is the 

dynamic viscosity of fluid inside the cell, A is the area of the tube,  is the rate of change in area, 
and L is the half-length of the tube. Since the dynamic viscosity for silicone oil is 13,000 centipoise 

•

A
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(= 13 Pa*s), let  /A = 0.25, f = 1 Hz, and the half-length is 25 mm (= 0.025 m), then D equals to 
1.2*10

•

A
-4 kg m2/s2.  W is the sum of kinetic and potential energy. Therefore,  

W

 

( 22

2
1 kxmv +=       (10) )

 
where, m is the mass of fluid within the cell, v is the velocity of the fluid as a result of an applied 
force, and k is the “spring” constant of rubber and machines. Approximating m = 0.05 g, v = 0.5 
mm/s, k = 2.0*106 N/m, and x = 0.02 mm (= 2.0*10-5 m), we have W = 4.0*10-4 kg*m2/s2. 
 
Substituting the corresponding values of D from Equation (9) and W from Equation (10) into 
Equation (8), we obtain a loss factor, η, of approximately 0.3 = tan δ for hourglass machines with 
rubber matrix filled with 13,000 centipoise silicone oil. This is a reasonable value that lies in the 
higher region of loss factors for plastics and rubbers, as seen from Figure D-9. 

 
 Figure D-9.  Typical ranges of loss factors for some common materials.4, 5 
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Equation (6) and Equation (9) show that the energy dissipated increases as the viscosity of the fluid 
increases, and as the cell size decreases. This is in agreement with viscous dissipation in open-cell 
foams containing a fluid (Gibson and Ashby2). When the hourglass machines are compressed, the 
fluid the cells contain is squeezed out; when extended, fluid is drawn back in. Work is done by 
forcing the fluid through the cells. The faster the cell is deformed, the more work is done.  
 
To further increase the damping capability of our machines, we need to devise a way to increase the 
pressure inside the cells.  As a secondary means, we could also increase the length of our test samples, 
since D ∝ L3 (from Equation 9). 
 
Future research includes conducting experimental tests to validate this theoretical result.  
 
D-3.3 Finite-Element Analysis (FEA)  
This hourglass fluid-filled machine design was modeled using the finite-element method for the solid 
portion and an analytical expression for the fluid.  The solid was a composite of two materials 
consisting of hourglass-shaped plastic sidewalls embedded in a matrix of rubber.  The plastic was 
modeled as linear elastic and the rubber as nonlinear elastic (“hyperelastic”) with constitutive 
properties measured independently.  The constitutive response for the fluid was given by the 
following analytical expression: 
 

22

2

2
0

22
1)(

A
AK

A
AN

A
A

L
PLP

••••

+−−=
− υ

ρ
    (11) 

    
where, K is the shape factor for the cross-sectional area, υ is the kinematic viscosity, A is the cross-

sectional area,  is the rate of change in area, ρ is the fluid density, P is the pressure at the outlet of 
the fluid-filled cavity, and P(L) is the pressure at a distance of L from the outlet. 

•

A

     
Equation (11) relates the pressure change in the fluid, P, to the change in cross-sectional area, A, of 
the fluid-filled cavity caused by deformation of the sidewalls.  The pressure change calculated from 
Equation (11) was implemented in the finite-element model as hydrostatic pressure boundary 
condition acting at the interface between the fluid-filled cavity and the plastic sidewalls.  Equilibrium 
between the solid and fluid was established by iteratively varying the pressure boundary condition 
supplied to the finite-element model.  The iteration continued until the change in cross-sectional area 
provided by the deformation of the solid matched the change in area calculated from Equation (11), at 
which time the iteration was halted and the finite-element calculation proceeded to the next time step. 
 
Figure 10 shows the undeformed and deformed shapes for the fluid-filled device. The vertical strain 
applied to the top external boundary causes the hourglass-shaped fluid cavity to shrink.  (As an 
explanatory note, the finite-element problem has two planes of symmetry, which allows one quarter 
of the problem to be solved in Figure D-10.) 
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Figure D-10. Undeformed (left) and deformed (right) meshes for the fluid-filled device.  

The plastic sidewall is shown in blue on the left and the rubber matrix is 
shown in red on the left.  (The FEA problem has a vertical and a horizontal 
symmetry plane, which allows one quarter of the problem to be solved.) 

 
 
 
 
 
Physically, the hourglass shape of the fluid-filled cavity provides a dramatic machine action that 
“amplifies” the strain applied to the external boundary.  Figure D-11 shows that a 3% applied strain 
causes a 50% drop in the cross sectional area of the hourglass-shaped fluid cavity.  This amplification 
allows a relatively small applied strain to move a large volume of fluid. 
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Figure D-11.  Decrease in volume of fluid cavity due to applied strain. 
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The finite-element model was used to calculate the work done by external forces upon the external 
boundary of the solid.  The energy stored in the solid (consisting of plastic sidewalls and polyurethane 
rubber matrix) was also calculated.  From conservation of energy, any difference between these two 
energy quantities was attributed to energy dissipated by the fluid.  Physically, the energy can be 
dissipated either as heat due to viscous losses or as kinetic energy exiting the control volume of the 
fluid-filled cavity. 
 
The dissipated energy was calculated as a function of fluid viscosity.  Three viscosities representative 
of silicone oil were used in the calculations: 13,000; 30,000; and 100,000 centipoise.  As shown in 
Figure D-12, the maximum dissipation occurs at an intermediate viscosity.  Physically, the energy 
dissipated is a balance between the work done by the fluid and the energy stored in the solid structure.  
At a higher viscosity, the fluid-filled cavity does not deform significantly, providing little opportunity 
for fluid motion and consequent viscous dissipation.  At a lower viscosity, there is little resistance to 
the forces exerted by the external environment, and a significant force between the fluid-filled cavity 
and the solid does not develop.  Therefore, for both low and high viscosities, the fluid does little work 
and dissipates little energy. 
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Figure D-12. Power dissipated by the fluid-filled device as a function 
of fluid  viscosity. 
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D-4. Conclusion 
 
 
We have designed, tested, and analyzed the damping capability of Z-machines that contain fluids of 
various viscosities. Further analysis conveyed to us that machines with hourglass-shaped design are 
more efficient in damping thanZ-machines, simply because they are capable of a greater volumetric 
change. From our research, we can make the follow conclusions: 
 

1. As expected, the presence of fluid inside machines increases the damping capability of a 
system substantially. For Z-machines, low viscosity fluids (e.g. water) displayed the greatest 
damping capacity. 

 
2. Hourglass machines have been shown, both geometrically and theoretically, to be the best 

dampers. Forces coming in from the top and bottom compress the machines. The hourglass 
shape causes the machines to bend inward, decreasing the internal volume. Since the structure 
is filled with fluid, the decrease in volume causes the fluid to flow. The volume decrease is 
enhanced by the Poisson’s effect in the matrix between the machines.  

 
3. A simple, yet reasonable, theoretical approximation of tan δ for hourglass machines filled 

with 13,000 centipoise silicone oil puts the material in the higher region of loss factors for 
plastics and rubbers (or in the lower region for gels and viscous liquids). Increasing the 
pressure inside the cells, the viscosity of fluid, the rate of change in area, or the half-length of 
the specimen would increase the loss factor of hourglass machines.   

 
4. Finite-Element Analysis showed that a 3% applied vertical strain causes a 50% drop in the 

cross-sectional area of the hourglass-shaped fluid cavity and the maximum dissipation occurs 
for fluid at an intermediate viscosity, e.g. at 13,000 centipoise silicone oil.  

 
Additional analysis through experiments will be conducted to validate our findings. Furthermore, 
we will devise a way to increase the pressure inside the hourglass cells to increase loss factor.  
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Abstract 
 

This document describes a simple and economical method for the pre-stressing of carbon fiber-
reinforced polymers (CFRP).  This method uses a mechanism based upon simple machines that are 
compressed.  The machine action converts the compressive force into shear force, which displaces the 
CFRP strip and tensions it in a way that is simple, easy and economical to use.   Tests on a prototype 
version of our stress-conversion mechanism have been performed that demonstrate the pre-stressing 
technique.  A cost-effective method to pre-stress carbon fiber reinforced polymer materials will 
optimize the retrofit and repair of concrete structures used in the nation’s transportation infrastructure.   
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E-1.  Introduction 

 
 
Carbon Fiber Reinforced Polymer (CFRP) materials are a cost-effective alternative to traditional 
methods for the retrofit and repair of concrete structure.  Pre-stressing the CFRP results in a 
significantly stronger concrete structure than when applying un-stressed CFRP.  In applications where 
the CFRP strips are pre-stressed, current methods use a large reaction frame with two tensioning 
rollers or a system of elaborate end-anchors to generate the large pre-stressing loads that are needed.  
In these cases, adhesive is applied to the concrete, after which the pre-stressed CFRP strip is mounted 
onto the concrete.   
 
Unfortunately, the current pre-stressing methods are so complicated, hard to use and expensive that, 
in general, CFRP strips are generally applied without pre-stressing.  Instead, adhesive is applied to the 
strip and the strip is simply placed onto the concrete to be reinforced.  Anchors are often bolted near 
the ends of the strip as a precaution against peeling.  Because the CFRP strips are currently not pre-
stressed in general, the concrete structures are not efficiently strengthened.  There is, therefore, a great 
need to develop a simple, robust and inexpensive method to pre-stress the CFRP strips used to retrofit 
and repair concrete structures. 
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E-2.  Z-MACs 

 
 

We have recently demonstrated that composites with unique properties can be manufactured by 
embedding many small simple machines in a matrix material.  We have been referring to these as 
Machine-Augmented Composites (MACs).  In particular, embedding Z-shaped machines within a 
matrix material results in a composite material which distorts in shear when placed under 
compression and vice versa (see ATR-2002(8810)-1, “The Fabrication and Mechanical Behavior of Z-
Shaped Machine-Augmented Composites, and ATR-2003(8810)-2, “Theoretical and Finite-Element 
Modeling of the Z-MACs” for a more detailed description).  This property allows design engineers a 
new method to solve mechanical issues.  
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E-3.  Clamping Forces in Anchor Applications 
 
 
Figure E-1 shows a device that contains two layers of 15-mm 4-celled rapid prototype machines at a 
60° inclination angle.  Each layer of machines is adhesively bonded to the outer plate on one side and 
a rubber sheet on the other.  A slider is placed between the layers of machines.  When the slider is 
pulled to the left, it slides quite easily.  Conversely, when the slider is pulled in the other direction, it 
will not move at all, as the shear forces created by the slider are converted into compressive forces by 
the embedded Z-shaped machines.  In this way, the device in Figure 1 acts effectively as a clamp.  
 
This effect can be explained using Figure E-2.  Normally, movement commences when a force is 
applied to the slider (resulting in a shear force at the interface) that exceeds the force of static friction.  
The force of static friction is a constant value (µ) times the normal force (N).  In this device, the 
normal force is set by adjusting the four bolts.  In a device without machines, the normal force is a 
constant and sliding would begin as indicated. 
 
 
 

Layers of machines 

Slider 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure E-1.   Device containing two layers of the 15-mm 4-celled rapid prototype machines at a 

60° inclination angle.  When the slider is pulled to the left, it will pass through the 
device easily.  When the slider is pulled to the right, the device acts like a clamp, 
locking the slider in place.   
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Figure E-2. Friction force versus shear force for slider device. 
 
In the device shown in Figure E-1, , the normal force is a function of the shear force due to the 
influence of the machines.  More specifically, when you pull on the slider, the machines convert the 
shear forces so they either add to, or subtract from, the normal force depending on the direction of the 
shear force.  This is shown graphically in the Figure E-3. 
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Sliding Never Starts 
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Figure E-3.  Friction force versus shear force for slider device illustrating the effect of pulling the 

slider in one direction versus the opposite direction. 
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The machines convert shear to compressive force with an efficiency that is indicated by the 
constant “K” in the figure above. In the easy sliding direction, the normal force decreases as 
the slider is pulled until breaks free.  In the opposite, or hard, direction the normal force increases as 
you pull.  If K times µ is greater than one, the slider cannot break free and clamping occurs.  We  have 
put a layer of rubber with quite a high µ in between the slider and the machines to dramatically show 
this effect.   
 
 
 

 96



E-4.  Pre-stressing Carbon Fiber Reinforced Polymer  
 

A possible application for this stress-conversion material is for pre-stressing Carbon Fiber-Reinforced 
Polymer (CFRP) in infrastructure applications.  By inserting our Machine Augmented Composite 
between the anchor plates and the CFRP, we create a clamping system that will hold the CFRP in 
place (see Figure E-4).  Furthermore, when the anchor bolts are tightened onto the concrete beam, the 
MAC becomes  compressed.  The resulting machine action within the composite converts the 
compressive force into a shear force that displaces and pre-stresses the CFRP strip into tension (i.e., 
pre-stresses the CFRP strip).  The MACs are fastened to the concrete beam by the same anchors that 
are placed near the ends of the CFRP strips to prevent peeling.  This procedure to pre-stress CFRP 
uses the same adhesive, CFRP strip, and anchors as in the current non-pre-stressed method. 

Unlike other current pre-stressing devices, our proposed mechanism would not require large amounts 
of extra machinery or use an elaborate end-anchorage system but would still be capable of generating 
the same forces as these devices.  We have already successfully performed a test on a prototype 
version of our stress-conversion mechanism that demonstrates the pre-stressing technique. Thus, our 
method is simple, inexpensive, and easy to use.  These benefits will make it possible to use pre-
stressed CFRP routinely in all applications. 
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Figure E-4.  CFRP is Stressed in Tension when Anchor Bolts are Tightened. 
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E-5.  Proof of Concept 
 
 
We have already performed a test on a prototype version of our stress-conversion mechanism, which 
is shown in Figure E-5. 
 
During the testing of this prototype stress-conversion mechanism, the four bolts were tightened, 
causing compressive forces on the angled shim stocks.  The shims force the grip up and to the right. 
For this test, we adhesively bonded the grip to the lower plate, which simulated a CFRP strip.  Grease 
simulating uncured adhesive was placed between the lower and upper plates, allowing them to slide 
with respect to each other.  

 
During this test, a tensile load of 450 lbs per square inch of grip was generated in the plates before the 
angled shims buckled.  We feel that 1,000-lb/sq. inch will be necessary for the proposed device and 
that these results would be easily achieved simply by using thicker shim stock.  The first series of 
tests will use a universal testing machine to evaluate the proposed mechanism designs and to select 
the best design. 
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Figure E-5.   Prototype Stress-Conversion Mechanism. 
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E-6.  Potential Impact and Payoff for Practice 
 
 

Urs Meier et.al. and Deuring at EMPA in Switzerland have convincingly demonstrated that pre-
stressing CFRP strips before they are bonded to the concrete results in a significantly stronger 
concrete structure by more efficiently using the strength of the composite.  The infrastructure 
applications include seismic retrofitting, improving design margins, and increasing the service life of 
existing structures.   
 
The main technical factor obstructing the widespread use of pre-stressed CFRP in concrete structural 
reinforcement is the difficulty in tensioning the composite before it is bonded to the concrete.   
Because of this level of difficulty, the cost of pre-stressing CFRP is prohibitively high for most 
applications.  This application directly addresses this issue and would create a simple and economical 
method for the pre-stressing of CFRP.  A cost-effective method to pre-stress fiber-reinforced 
composite materials will optimize the retrofit and repair of concrete structures.      
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